论文标题

贝叶斯后间隔校准以提高观察性研究的解释性

Bayesian Posterior Interval Calibration to Improve the Interpretability of Observational Studies

论文作者

Mulgrave, Jami J., Madigan, David, Hripcsak, George

论文摘要

观察性医疗保健数据提供了大规模估计医疗产品因果影响的潜力。但是,观测研究产生的置信区间和p值仅考虑随机错误,并且无法解决系统误差。结果,诸如置信区间覆盖范围和I型错误率之类的操作特征通常会急剧偏离其名义值,并且不可能进行解释。虽然在观察性研究中,人们长期以来对系统错误的认识,但从经验上说明系统错误的分析方法相对较新。几位作者提出了使用阴性对照(也称为“伪造假设”)和阳性对照的方法。基本思想是根据对负和阳性对照的分析中检测到的偏差(如果有)来调整置信区间和p值。在这项工作中,我们提出了一种使用负和阳性对照的后间隔校准的贝叶斯统计程序。我们表明,后间隔校准程序恢复了名义特征,例如95%的真实效应大小的覆盖率增加了95%的后间隔。

Observational healthcare data offer the potential to estimate causal effects of medical products on a large scale. However, the confidence intervals and p-values produced by observational studies only account for random error and fail to account for systematic error. As a consequence, operating characteristics such as confidence interval coverage and Type I error rates often deviate sharply from their nominal values and render interpretation impossible. While there is longstanding awareness of systematic error in observational studies, analytic approaches to empirically account for systematic error are relatively new. Several authors have proposed approaches using negative controls (also known as "falsification hypotheses") and positive controls. The basic idea is to adjust confidence intervals and p-values in light of the bias (if any) detected in the analyses of the negative and positive control. In this work, we propose a Bayesian statistical procedure for posterior interval calibration that uses negative and positive controls. We show that the posterior interval calibration procedure restores nominal characteristics, such as 95% coverage of the true effect size by the 95% posterior interval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源