论文标题

W2S:具有关节deoising和超分辨率的显微镜数据,用于SIM卡映射

W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping

论文作者

Zhou, Ruofan, Helou, Majed El, Sage, Daniel, Laroche, Thierry, Seitz, Arne, Süsstrunk, Sabine

论文摘要

在荧光显微镜实时成像中,一侧的信噪比和空间分辨率与另一侧生物样品的完整性之间存在着关键的权衡。为了获得清洁的高分辨率(HR)图像,可以使用显微镜技术,例如结构化刷新显微镜(SIM),或应用denoising和denoising and Super-Lostolution(SR)算法。但是,前一种选项需要多个镜头来损坏样品,尽管对于后一种选项存在有效的基于深度学习的算法,但在联合DeNoisising和SR(JDSR)任务上评估这些算法没有基准测试。为了在显微镜数据上研究JDSR,我们建议使用常规的荧光广场和SIM成像获取这种新型JDSR数据集,Wideffield2SIM(W2S)。 W2s包括144,000个真实的荧光显微镜图像,总共产生了360组图像。一组由具有不同噪声水平的嘈杂的低分辨率(LR)广场图像组成,无噪声LR图像和相应的高质量HR SIMS图像。 W2S允许我们基准基准6种脱氧方法和6种SR方法的组合。我们表明,最先进的SR网络在嘈杂的输入方面表现较差。我们的评估还表明,在重建误差之后使用最佳SR方法的最佳DENOISER不一定会产生最佳最终结果。定量和定性结果都表明,SR网络对噪声敏感,而denoising和SR算法的顺序应用是亚最佳选择。最后,我们证明了SR网络对JDSR的端到端验证均优于最先进的Deep Denoising和SR网络的任何组合

In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM), or apply denoising and super-resolution (SR) algorithms. However, the former option requires multiple shots that can damage the samples, and although efficient deep learning based algorithms exist for the latter option, no benchmark exists to evaluate these algorithms on the joint denoising and SR (JDSR) tasks. To study JDSR on microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S), acquired using a conventional fluorescence widefield and SIM imaging. W2S includes 144,000 real fluorescence microscopy images, resulting in a total of 360 sets of images. A set is comprised of noisy low-resolution (LR) widefield images with different noise levels, a noise-free LR image, and a corresponding high-quality HR SIM image. W2S allows us to benchmark the combinations of 6 denoising methods and 6 SR methods. We show that state-of-the-art SR networks perform very poorly on noisy inputs. Our evaluation also reveals that applying the best denoiser in terms of reconstruction error followed by the best SR method does not necessarily yield the best final result. Both quantitative and qualitative results show that SR networks are sensitive to noise and the sequential application of denoising and SR algorithms is sub-optimal. Lastly, we demonstrate that SR networks retrained end-to-end for JDSR outperform any combination of state-of-the-art deep denoising and SR networks

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源