论文标题
来自$(n)$和$ usp(2n)$的特征多项式的对数衍生物的矩
Moments of the logarithmic derivative of characteristic polynomials from $SO(N)$ and $USp(2N)$
论文作者
论文摘要
我们研究正交和符号随机矩阵的特征多项式的对数衍生物的矩。特别是,我们计算了在接近1的点上评估的大型矩阵大小的渐近学,即$ n $。这是在Bailey,Bettin,Blower,Conrey,Prokhorov,Prokhorov,Rubinstein和Snaith的工作之后进行的,在其中,它们在单一的随机矩阵的情况下对这些渐近性进行了计算。
We study moments of the logarithmic derivative of characteristic polynomials of orthogonal and symplectic random matrices. In particular, we compute the asymptotics for large matrix size, $N$, of these moments evaluated at points which are approaching 1. This follows work of Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein and Snaith where they compute these asymptotics in the case of unitary random matrices.