论文标题
关于中微子赫尔茨普朗 - 罗塞尔图的恒星进化
On Stellar Evolution In A Neutrino Hertzsprung-Russell Diagram
论文作者
论文摘要
我们探索了太阳金属性恒星模型从其前序列阶段的精选网格的演变,到中微子Hertzsprung-russell图的最终命运,中微子的光度代替了传统的光子光度。使用校准的\ Mesa \太阳中微子发光度($ l_ {ν,\ odot} $ = 0.02398 $ \ cdot $ $ $ $ $ $ $ $ l_ {γ,\ odot} $ = 9.1795 0.3在氦气闪光期间氦气燃烧中的0.3 MEV电子中微子发射(峰值$l_ν / l_ {ν,\ odot} \ simeq $ 10 $^4 $,flux $φ_{c {c {\ rm He \ rm He \ flash}}}} \ simeq $ 170( s$^{-1}$ for a star located at a distance of $d$ parsec, timescale $\simeq$ 3 days) and the thermal pulse (peak $L_ν / L_{ν,\odot} \simeq$ 10$^9$, flux $Φ_{ν, {\rm TP}} \simeq$ 1.7$\times$10$^7$ (10 PC/$ d $)$^{2} $ cm $^{ - 2} $ s $^{ - 1} $,timesscale $ \ simeq $ 0.1 yr)在低质量恒星中的进化阶段,作为Stellar netrino天文学的潜在探针。我们还描述了中微子从核反应和热过程中中微子对中微子中微子损失的贡献,沿着中微子赫特里诺·赫尔特里诺(Hertzsprung-Russell)图中的恒星轨道损失。我们发现,除了氢和氦燃烧时,核反应中的中微子占主导地位,而热过程中的中微子则占主导地位。
We explore the evolution of a select grid of solar metallicity stellar models from their pre-main sequence phase to near their final fates in a neutrino Hertzsprung-Russell diagram, where the neutrino luminosity replaces the traditional photon luminosity. Using a calibrated \MESA\ solar model for the solar neutrino luminosity ($L_{ν,\odot}$ = 0.02398 $\cdot$ $L_{γ,\odot}$ = 9.1795 $\times$ 10$^{31}$ erg s$^{-1}$) as a normalization, we identify $\simeq$ 0.3 MeV electron neutrino emission from helium burning during the helium flash (peak $L_ν / L_{ν,\odot} \simeq$ 10$^4$, flux $Φ_{ν, {\rm He \ flash}} \simeq$ 170 (10 pc/$d$)$^{2}$ cm$^{-2}$ s$^{-1}$ for a star located at a distance of $d$ parsec, timescale $\simeq$ 3 days) and the thermal pulse (peak $L_ν / L_{ν,\odot} \simeq$ 10$^9$, flux $Φ_{ν, {\rm TP}} \simeq$ 1.7$\times$10$^7$ (10 pc/$d$)$^{2}$ cm$^{-2}$ s$^{-1}$, timescale $\simeq$ 0.1 yr) phases of evolution in low mass stars as potential probes for stellar neutrino astronomy. We also delineate the contribution of neutrinos from nuclear reactions and thermal processes to the total neutrino loss along the stellar tracks in a neutrino Hertzsprung-Russell diagram. We find, broadly but with exceptions, that neutrinos from nuclear reactions dominate whenever hydrogen and helium burn, and that neutrinos from thermal processes dominate otherwise.