论文标题
分化算子在均匀收敛的迪里奇系列串联的空间中
The differentiation operator in the space of uniformly convergent Dirichlet series
论文作者
论文摘要
当它在所有Dirichlet系列的Fréchet空间中作用时,研究了分化操作员的连续性,紧凑性,光谱和恒星性能,这些特性在所有半平面$ \ {s \ in \ MathBb {C} c} \ | \ {\ rm re} s> \ varepsilon \} $对于每个$ \ varepsilon> 0 $。还研究了分化形式逆的特性。
Continuity, compactness, the spectrum and ergodic properties of the differentiation operator are investigated, when it acts in the Fréchet space of all Dirichlet series that are uniformly convergent in all half-planes $\{s \in \mathbb{C} \ | \ {\rm Re} s > \varepsilon \}$ for each $\varepsilon>0$. The properties of the formal inverse of the differentiation are also investigated.