论文标题
在Hermitian歧管上的Monge-ampère方程的连续解决方案,以容纳能力为主的措施
Continuous solutions to Monge-Ampère equations on Hermitian manifolds for measures dominated by capacity
论文作者
论文摘要
我们证明了在紧凑的赫尔米利亚歧管上,在右侧非常一般的测量中存在连续的准上颈术解决方案。我们承认以某种方式以某种方式控制的措施,尤其是由Dinh-Nguyen-Sbibony研究的中等措施。结果,我们给出了承认Hölder连续的准次荷马人潜力的措施的特征,灵感来自DINH-NGUYEN的工作。
We prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Ampère equation on a compact Hermitian manifold for a very general measre on the right hand side. We admit measures dominated by capacity in a certain manner, in particular, moderate measures studied by Dinh-Nguyen-Sibony. As a consequence, we give a characterization of measures admitting Hölder continuous quasi-plurisubharmonic potential, inspired by the work of Dinh-Nguyen.