论文标题

移动目标蒙特卡洛

Moving Target Monte Carlo

论文作者

Ying, Haoyun, Mao, Keheng, Mosegaard, Klaus

论文摘要

在考虑从高维随机变量$ \ Mathbf {x} $中进行采样时,Markov Chain Monte Carlo(MCMC)方法可能会流行,并且可能是未均衡的概率密度$ p $并观察到的数据$ \ MATHBF {D} $。但是,MCMC需要在构造接受率时在每次迭代时评估建议的候选$ \ Mathbf {x} $的后验分布$ p(\ mathbf {x} | \ mathbf {d})$。当此类评估棘手时,这是昂贵的。在本文中,我们引入了一种新的非马克维亚采样算法,称为移动目标蒙特卡洛(MTMC)。 $ n $ th迭代时的接受率是使用后验分布的迭代更新近似$ a_n(\ mathbf {x})$而不是$ p(\ mathbf {x} | \ mathbf {d})$的。仅当候选$ \ mathbf {x} $接受后,才能计算后$ p(\ mathbf {x} | \ mathbf {d})$的真实值。近似$ a_n $使用这些评估,并将$ p $收敛为$ n \ rightarrow \ infty $。在不同情况下,给出了收敛和收敛速率估计的证明。

The Markov Chain Monte Carlo (MCMC) methods are popular when considering sampling from a high-dimensional random variable $\mathbf{x}$ with possibly unnormalised probability density $p$ and observed data $\mathbf{d}$. However, MCMC requires evaluating the posterior distribution $p(\mathbf{x}|\mathbf{d})$ of the proposed candidate $\mathbf{x}$ at each iteration when constructing the acceptance rate. This is costly when such evaluations are intractable. In this paper, we introduce a new non-Markovian sampling algorithm called Moving Target Monte Carlo (MTMC). The acceptance rate at $n$-th iteration is constructed using an iteratively updated approximation of the posterior distribution $a_n(\mathbf{x})$ instead of $p(\mathbf{x}|\mathbf{d})$. The true value of the posterior $p(\mathbf{x}|\mathbf{d})$ is only calculated if the candidate $\mathbf{x}$ is accepted. The approximation $a_n$ utilises these evaluations and converges to $p$ as $n \rightarrow \infty$. A proof of convergence and estimation of convergence rate in different situations are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源