论文标题
多雨屏幕:收集多雨的数据集,室内
Rainy screens: Collecting rainy datasets, indoors
论文作者
论文摘要
由于难以保证适当的地面真相并与所需的天气条件同步,因此在机器人技术中以不利条件的方式获取数据是一项繁琐的任务。在本文中,我们提出了一种简单的方法 - 记录一个高分辨率屏幕 - 用于从现有的清除地面图像中生成多种雨天的图像,该图像是域和源词,简单且缩小。这种设置使我们能够使用辅助任务基础真实数据(例如语义细分,对象位置等)利用现有数据集的多样性。我们根据CityScapes和bdd生成了带有真实粘附的液滴和雨条的下雨图像,并训练了一个损失的模型。我们提出了图像重建和语义分割的定量结果,以及针对样本外域的定性结果,这表明经过数据训练的模型很好地推广了。
Acquisition of data with adverse conditions in robotics is a cumbersome task due to the difficulty in guaranteeing proper ground truth and synchronising with desired weather conditions. In this paper, we present a simple method - recording a high resolution screen - for generating diverse rainy images from existing clear ground-truth images that is domain- and source-agnostic, simple and scales up. This setup allows us to leverage the diversity of existing datasets with auxiliary task ground-truth data, such as semantic segmentation, object positions etc. We generate rainy images with real adherent droplets and rain streaks based on Cityscapes and BDD, and train a de-raining model. We present quantitative results for image reconstruction and semantic segmentation, and qualitative results for an out-of-sample domain, showing that models trained with our data generalize well.