论文标题
复合费米斯的有限摩托明配对中的分数切绝缘子中的相互交织顺序
Intertwined Order in Fractional Chern Insulators from Finite-Momentum Pairing of Composite Fermions
论文作者
论文摘要
我们通过考虑晶格分数量子霍尔(FQH)的状态,研究了分数Chern绝缘子中相互交织的顺序问题,该状态是由平方晶格Hofstadter模型配对的复合费米子配对而产生的。在某些填充分数下,磁翻译对称性可确保复合费米子形成带有多个口袋的费米表面,从而在有吸引力的相互作用的情况下导致有限的摩托车库珀对形成。我们获得了表现出丰富的条纹和拓扑阶段阵列的平均场相图,建立了配对的晶格FQH状态,作为研究拓扑和常规损坏的对称顺序相互交织的理想平台。
We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fractions, magnetic translation symmetry ensures the composite fermions form Fermi surfaces with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases, establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and conventional broken symmetry order.