论文标题
在étale动机光谱和Voevodsky的融合猜想上
On étale motivic spectra and Voevodsky's convergence conjecture
论文作者
论文摘要
在Levine和Voevodsky的工作之后,我们证明了切片频谱序列的新收敛结果。这验证了Voevodsky在切片频谱序列收敛的猜想中的衍生变体。反过来,这是我们主要定理的必要成分:thomason式的典型的典型下降效果,用于刺激的动机球谱,该频谱概括并扩展了先前的典型典型下降结果,以示出动机共同体理论的特殊实例。结合第一作者的典型僵化结果,我们获得了典型动机稳定类别的完整结构描述。
We prove a new convergence result for the slice spectral sequence, following work by Levine and Voevodsky. This verifies a derived variant of Voevodsky's conjecture on convergence of the slice spectral sequence. This is, in turn, a necessary ingredient for our main theorem: a Thomason-style étale descent result for the Bott-inverted motivic sphere spectrum, which generalizes and extends previous étale descent results for special examples of motivic cohomology theories. Combined with first author's étale rigidity results, we obtain a complete structural description of the étale motivic stable category.