论文标题

相互正交频率平方的新表示

A new representation of mutually orthogonal frequency squares

论文作者

Jedwab, Jonathan, Popatia, Tabriz

论文摘要

$ f(mλ;λ)的相互正交频率平方(MOF)$概括了相互正交拉丁正方形的结构:而不是在每个正方形的每一列中完全出现一次$ m $符号,而是每个正方形的每一列,而是重复编号为$λ\ ge 1 $。此类MOF数量的经典上限为$ \ frac {(mλ-1)^2} {m-1} $。我们引入了$ f(mλ;λ)$的MOF的新表示,作为$ \ {0,1 \} $ arrays的线性组合。我们使用此表示形式给出了经典上限的基本证明,以及一组实现上限的MOF的结构约束。然后,当$ m $均匀而$λ$时,我们使用此表示形式为一组$ f(mλ;λ)$的MOF建立最大标准,而$λ$很奇怪,它简化并扩展了先前的分析[T。 Britz,N.J。Cavenagh,A。Mammoliti,I.M. Wanless,相互正交的二元频率正方形,电子。 J. Combin。,27(#P3.7),2020,26页],$ m = 2 $和$λ$是奇数的。

Mutually orthogonal frequency squares (MOFS) of type $F(mλ;λ)$ generalize the structure of mutually orthogonal Latin squares: rather than each of $m$ symbols appearing exactly once in each row and in each column of each square, the repetition number is $λ\ge 1$. A classical upper bound for the number of such MOFS is $\frac{(mλ-1)^2}{m-1}$. We introduce a new representation of MOFS of type $F(mλ;λ)$, as a linear combination of $\{0,1\}$ arrays. We use this representation to give an elementary proof of the classical upper bound, together with a structural constraint on a set of MOFS achieving the upper bound. We then use this representation to establish a maximality criterion for a set of MOFS of type $F(mλ;λ)$ when $m$ is even and $λ$ is odd, which simplifies and extends a previous analysis [T. Britz, N.J. Cavenagh, A. Mammoliti, I.M. Wanless, Mutually orthogonal binary frequency squares, Electron. J. Combin., 27(#P3.7), 2020, 26 pages] of the case when $m=2$ and $λ$ is odd.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源