论文标题

具有渐进式对抗网络的感知图像超分辨率

Perceptual Image Super-Resolution with Progressive Adversarial Network

论文作者

Wong, Lone, Zhao, Deli, Wan, Shaohua, Zhang, Bo

论文摘要

单像超分辨率(SISR)旨在改善单个单个小型图像的分辨率。随着消费电子在我们的日常生活中的普及,这个话题变得越来越有吸引力。在本文中,我们认为维度的诅咒是限制最先进算法的性能的根本原因。为了解决这个问题,我们提出了能够应对特定于域特定图像超分辨率的困难的进步对抗网络(PAN)。 PAN的关键原则是,我们不应用任何基于距离的重建错误作为要优化的损失,因此不受维度诅咒的限制。为了保持忠实的重建精度,我们诉诸于U-NET和神经建筑的逐步发展。编码器中的低级特征可以转移到解码器中,以使用U-NET增强纹理细节。渐进式增长会逐渐增强图像分辨率,从而保留恢复图像的精度。此外,为了获得高保真输出,我们利用强大的Stylegan的框架来执行对抗性学习。如果没有维度的诅咒,我们的模型可以超大尺寸的图像,具有显着的照片真实细节,几乎没有扭曲。广泛的实验证明了我们的算法优于定量和定性的最先进的实验。

Single Image Super-Resolution (SISR) aims to improve resolution of small-size low-quality image from a single one. With popularity of consumer electronics in our daily life, this topic has become more and more attractive. In this paper, we argue that the curse of dimensionality is the underlying reason of limiting the performance of state-of-the-art algorithms. To address this issue, we propose Progressive Adversarial Network (PAN) that is capable of coping with this difficulty for domain-specific image super-resolution. The key principle of PAN is that we do not apply any distance-based reconstruction errors as the loss to be optimized, thus free from the restriction of the curse of dimensionality. To maintain faithful reconstruction precision, we resort to U-Net and progressive growing of neural architecture. The low-level features in encoder can be transferred into decoder to enhance textural details with U-Net. Progressive growing enhances image resolution gradually, thereby preserving precision of recovered image. Moreover, to obtain high-fidelity outputs, we leverage the framework of the powerful StyleGAN to perform adversarial learning. Without the curse of dimensionality, our model can super-resolve large-size images with remarkable photo-realistic details and few distortions. Extensive experiments demonstrate the superiority of our algorithm over state-of-the-arts both quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源