论文标题

高维的多尺度在线更改点检测

High-dimensional, multiscale online changepoint detection

论文作者

Chen, Yudong, Wang, Tengyao, Samworth, Richard J.

论文摘要

我们在设置中引入了一种用于高维,在线更改点检测的新方法,在该设置中,$ p $ - 变量高斯数据流可能会发生平均值。该过程通过对每个坐标中不同尺度的简单替代方案进行似然比测试,然后在范围和坐标之间汇总测试统计量来起作用。该算法是在线的,因为其存储要求和每个新观察的最差计算复杂性都与以前的观察次数无关。实际上,它甚至可能要快得多。我们证明,我们的过程的耐心或零下的平均运行时间至少在所需的名义级别,并在替代方面的响应延迟提供了保证,这取决于平均变化的向量的稀疏性。模拟证实了我们提案的实际有效性,该提案已在“ OCD”中实施,我们还证明了其在地震学数据集上的实用性。

We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations; in practice, it may even be significantly faster than this. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package 'ocd', and we also demonstrate its utility on a seismology data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源