论文标题

增强用于材料科学应用的近期量子加速器的指令集架构

Enhancing a Near-Term Quantum Accelerator's Instruction Set Architecture for Materials Science Applications

论文作者

Zou, Xiang, Premaratne, Shavindra P., Rol, M. Adriaan, Johri, Sonika, Ostroukh, Viacheslav, Michalak, David J., Caudillo, Roman, Clarke, James S., Dicarlo, Leonardo, Matsuura, A. Y.

论文摘要

如今,他们正在开发具有数十至数百台嘈杂的量子的量子计算机。为了对现实世界的应用有用,我们认为这些近期系统不能简单地缩放为未来易于故障的大规模量子计算机的非错误校正版本。这些近期系统需要特定的体系结构和设计属性,以实现它们的全部潜力。为了有效地执行算法,必须设计量子处理器,以相对于量子数进行扩展,并最大程度地提高量子器的变形范围内有用的计算。在这项工作中,我们采用应用程序 - 系统Qubit的共同设计方法来架构近期量子协调员。为了支持模拟材料系统的量子动力学的现实世界应用领域,我们设计了(参数化的)任意单品旋转指令和两Qubiting Contangling Controlded-Z指令。我们介绍动态门集和分页机制来实施指令。为了评估这两个说明的功能和性能,我们实施了算法的两倍版本,以研究疾病诱导的金属构造器过渡并运行60个随机实例,每个实例都实现了一种疾病构型,并包含40个二次提示(或GATES)(或GATES)和104个单Qubit说明。我们观察到该系统时间进化的预期量子动力学。

Quantum computers with tens to hundreds of noisy qubits are being developed today. To be useful for real-world applications, we believe that these near-term systems cannot simply be scaled-down non-error-corrected versions of future fault-tolerant large-scale quantum computers. These near-term systems require specific architecture and design attributes to realize their full potential. To efficiently execute an algorithm, the quantum coprocessor must be designed to scale with respect to qubit number and to maximize useful computation within the qubits' decoherence bounds. In this work, we employ an application-system-qubit co-design methodology to architect a near-term quantum coprocessor. To support algorithms from the real-world application area of simulating the quantum dynamics of a material system, we design a (parameterized) arbitrary single-qubit rotation instruction and a two-qubit entangling controlled-Z instruction. We introduce dynamic gate set and paging mechanisms to implement the instructions. To evaluate the functionality and performance of these two instructions, we implement a two-qubit version of an algorithm to study a disorder-induced metal-insulator transition and run 60 random instances of it, each of which realizes one disorder configuration and contains 40 two-qubit instructions (or gates) and 104 single-qubit instructions. We observe the expected quantum dynamics of the time-evolution of this system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源