论文标题

由量子仿射代数引起的简单的根系

Simply-laced root systems arising from quantum affine algebras

论文作者

Kashiwara, Masaki, Kim, Myungho, Oh, Se-jin, Park, Euiyong

论文摘要

令$ u_q'(\ mathfrak {g})$为具有不确定$ q $的量子仿期代数,让$ \ \ \ \ \ \ m arthscr {c} _ {\ mathfrak {g}} $是有限量比的$ untiparable $ untable $ u_q'(\ mathfrak {g mathfrak {g} g})$。我们为$ \ Mathscr {c}的单体子类别编写$ \ Mathscr {C} _ {\ Mathfrak {g}}^0 $。在本文中,我们以自然方式将一个简单的有限类型根系与每个量子仿射代数$ u_q'(\ Mathfrak {g})$相关联,并表明$ \ Mathscr {c} _ {c} _ {\ mathfrak {g}}} $ and $ \ m garscr {通过与根系相关的晶格进行参数化。我们首先定义某个ABELIAN组$ \ MATHCAL {w} $(resp。$ \ natercal {w} _0 $),是由$ \ Mathscr {c} _ {\ Mathfrak {\ Mathfrak {g}} $(reps。$ \ Mathscr {c} $} $ {g Mather} $ {c {g Maths}的简单模块引起的。作者在先前的工作中引入的$λ^\ infty $。组$ \ MATHCAL {W} $和$ \ MATHCAL {W} _0 $具有子集$δ$和$δ_0$,由$ \ Mathscr {c} _ {\ Mathfrak {\ Mathfrak {g}} $和$ \ MATHSCR和MATHSCR {c} c} c}的基本表示确定。我们证明了这对$(\ Mathbb {r} \ otimes_ \ Mathbb {Z} \ Mathcal {w} _0,Δ_0)$是一个不可记录的有限的根系,用于有限类型的根系,以及一对$(\ Mathbb {Rimimes_} \ otimes_ \ otimes_ \ Mathbb} $(\ Mathbb {r} \ otimes_ \ Mathbb {z} \ Mathcal {w} _0,δ_0)$的无限副本的直接总和。

Let $U_q'(\mathfrak{g})$ be a quantum affine algebra with an indeterminate $q$ and let $\mathscr{C}_{\mathfrak{g}}$ be the category of finite-dimensional integrable $U_q'(\mathfrak{g})$-modules. We write $\mathscr{C}_{\mathfrak{g}}^0$ for the monoidal subcategory of $\mathscr{C}_{\mathfrak{g}}$ introduced by Hernandez-Leclerc. In this paper, we associate a simply-laced finite type root system to each quantum affine algebra $U_q'(\mathfrak{g})$ in a natural way, and show that the block decompositions of $\mathscr{C}_{\mathfrak{g}}$ and $\mathscr{C}_{\mathfrak{g}}^0$ are parameterized by the lattices associated with the root system. We first define a certain abelian group $\mathcal{W}$ (resp. $\mathcal{W}_0$) arising from simple modules of $ \mathscr{C}_{\mathfrak{g}}$ (resp. $\mathscr{C}_{\mathfrak{g}}^0$) by using the invariant $Λ^\infty$ introduced in the previous work by the authors. The groups $\mathcal{W}$ and $\mathcal{W}_0$ have the subsets $Δ$ and $Δ_0$ determined by the fundamental representations in $ \mathscr{C}_{\mathfrak{g}}$ and $\mathscr{C}_{\mathfrak{g}}^0$ respectively. We prove that the pair $( \mathbb{R} \otimes_\mathbb{Z} \mathcal{W}_0, Δ_0)$ is an irreducible simply-laced root system of finite type and the pair $( \mathbb{R} \otimes_\mathbb{Z} \mathcal{W}, Δ) $ is isomorphic to the direct sum of infinite copies of $( \mathbb{R} \otimes_\mathbb{Z} \mathcal{W}_0, Δ_0)$ as a root system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源