论文标题
StereOneuroBayesslam:一种基于直接稀疏方法的神经生物学启发的立体视觉大满贯系统
StereoNeuroBayesSLAM: A Neurobiologically Inspired Stereo Visual SLAM System Based on Direct Sparse Method
论文作者
论文摘要
我们提出了一个基于方向稀疏方法的神经生物学启发的同时定位和映射(SLAM)系统,以从移动的立体声摄像机中实时构建大规模环境的认知图。核心大满贯系统主要包括一个贝叶斯吸引子网络,该网络利用海马中的头部方向(HD)细胞的神经反应,并分别代表机器人在环境中的头部方向和位置。直接稀疏方法用于从立体声摄像机准确稳健地估算速度信息。输入旋转和翻译速度分别由HD细胞和网格细胞网络集成。我们在Kitti Odometry基准数据集上展示了我们的神经生物学启发的立体视觉大满贯系统。我们提出的大满贯系统可以实时从立体声摄像机实时构建一致的半度拓扑图。对认知图的定性评估表明,我们提出的神经生物学启发的立体视觉大满贯系统优于我们以前的大脑启发算法,而神经生物学启发的单眼视觉大满贯系统在跟踪的准确性和鲁棒性方面都更接近传统的州立式态度。
We propose a neurobiologically inspired visual simultaneous localization and mapping (SLAM) system based on direction sparse method to real-time build cognitive maps of large-scale environments from a moving stereo camera. The core SLAM system mainly comprises a Bayesian attractor network, which utilizes neural responses of head direction (HD) cells in the hippocampus and grid cells in the medial entorhinal cortex (MEC) to represent the head direction and the position of the robot in the environment, respectively. Direct sparse method is employed to accurately and robustly estimate velocity information from a stereo camera. Input rotational and translational velocities are integrated by the HD cell and grid cell networks, respectively. We demonstrated our neurobiologically inspired stereo visual SLAM system on the KITTI odometry benchmark datasets. Our proposed SLAM system is robust to real-time build a coherent semi-metric topological map from a stereo camera. Qualitative evaluation on cognitive maps shows that our proposed neurobiologically inspired stereo visual SLAM system outperforms our previous brain-inspired algorithms and the neurobiologically inspired monocular visual SLAM system both in terms of tracking accuracy and robustness, which is closer to the traditional state-of-the-art one.