论文标题
使用指导分支机构自动驾驶的有效不确定性意识的决策
Efficient Uncertainty-aware Decision-making for Automated Driving Using Guided Branching
论文作者
论文摘要
由于其他交通参与者的随机行为和感知不确定性(例如,跟踪噪声和预测错误等)的潜在随机行为,对自动车辆(AV)的决策对自动车辆(AV)具有挑战性。尽管部分可观察到的马尔可夫决策过程(POMDP)提供了一种系统的方法来纳入这些不确定性,但是当缩放到现实世界中的大尺寸问题时,它在计算上很快变得棘手。在本文中,我们提出了一个有效的不确定性意识决策(EUDM)框架,该框架在复杂的驾驶环境中实时产生长期的横向和纵向行为。计算复杂性通过两种新技术控制到适当的水平,即域特异性闭环策略树(DCP-Tree)结构和有条件的集中分支(CFB)机制。关键思想是利用特定领域的专家知识来指导动作和意图空间中的分支。使用真实车辆捕获的板载感应数据和交互式多代理仿真平台对所提出的框架进行了验证。我们还发布了框架的代码以适应基准测试。
Decision-making in dense traffic scenarios is challenging for automated vehicles (AVs) due to potentially stochastic behaviors of other traffic participants and perception uncertainties (e.g., tracking noise and prediction errors, etc.). Although the partially observable Markov decision process (POMDP) provides a systematic way to incorporate these uncertainties, it quickly becomes computationally intractable when scaled to the real-world large-size problem. In this paper, we present an efficient uncertainty-aware decision-making (EUDM) framework, which generates long-term lateral and longitudinal behaviors in complex driving environments in real-time. The computation complexity is controlled to an appropriate level by two novel techniques, namely, the domain-specific closed-loop policy tree (DCP-Tree) structure and conditional focused branching (CFB) mechanism. The key idea is utilizing domain-specific expert knowledge to guide the branching in both action and intention space. The proposed framework is validated using both onboard sensing data captured by a real vehicle and an interactive multi-agent simulation platform. We also release the code of our framework to accommodate benchmarking.