论文标题

树皮:在多代理环境中开放行为基准测试

BARK: Open Behavior Benchmarking in Multi-Agent Environments

论文作者

Bernhard, Julian, Esterle, Klemens, Hart, Patrick, Kessler, Tobias

论文摘要

在复杂的交通情况下预测和计划互动行为提出了一项具有挑战性的任务。尤其是在涉及多个交流参与者互动的情况下,自动驾驶汽车仍然难以解释情况并最终实现自己的任务目标。由于驾驶测试是昂贵的,难以找到和复制挑战性的情况,因此模拟被广泛用于开发,测试和基准测试行为模型。但是,大多数模拟都依赖于流量参与者的数据集和简单的行为模型,并且不涵盖各种现实世界中的交互式人类行为。在这项工作中,我们介绍了Bark,这是一个开源行为基准测试环境,旨在减轻上述缺点。在树皮中,行为模型(重新)用于计划,预测和仿真。当前可用的一系列模型,例如蒙特卡洛树搜索和基于增强学习的行为模型。我们使用公共数据集和基于采样的方案生成来显示树皮中行为模型的交换性。我们评估了模型如何应对相互作用以及它们在交换行为模型方面的鲁棒性。我们的评估表明,Bark为行为模型的系统发展提供了合适的框架。

Predicting and planning interactive behaviors in complex traffic situations presents a challenging task. Especially in scenarios involving multiple traffic participants that interact densely, autonomous vehicles still struggle to interpret situations and to eventually achieve their own mission goal. As driving tests are costly and challenging scenarios are hard to find and reproduce, simulation is widely used to develop, test, and benchmark behavior models. However, most simulations rely on datasets and simplistic behavior models for traffic participants and do not cover the full variety of real-world, interactive human behaviors. In this work, we introduce BARK, an open-source behavior benchmarking environment designed to mitigate the shortcomings stated above. In BARK, behavior models are (re-)used for planning, prediction, and simulation. A range of models is currently available, such as Monte-Carlo Tree Search and Reinforcement Learning-based behavior models. We use a public dataset and sampling-based scenario generation to show the inter-exchangeability of behavior models in BARK. We evaluate how well the models used cope with interactions and how robust they are towards exchanging behavior models. Our evaluation shows that BARK provides a suitable framework for a systematic development of behavior models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源