论文标题

宇宙学鳍的空间

Cosmological Finsler Spacetimes

论文作者

Hohmann, Manuel, Pfeifer, Christian, Voicu, Nicoleta

论文摘要

将宇宙学原理应用于芬斯勒的空间,我们确定了空间均匀和各向同性的Finsler几何形状的对称发电机的代数,从而推广Friedmann-Lemann-Lema- Robertson-Walker-Walker-Walker-Walker的几何形状。特别是,我们发现最一般的空间均匀和各向同性的伯瓦尔德(Berwald)空间,它们是Finsler的空间,可以被视为最接近Pseudo-Riemannian的几何形状。它们是由Finsler Lagrangian在切线束上的零均匀函数中构建的,该功能以非常具体的方式编码Finsler Lagrangian的速度依赖性。所获得的宇宙学伯瓦尔德几何形状是候选宇宙几何形状的候选物,当它们从鳍重力方程中获得的溶液时。

Applying the cosmological principle to Finsler spacetimes, we identify the Lie Algebra of symmetry generators of spatially homogeneous and isotropic Finsler geometries, thus generalising Friedmann-Lemaître-Robertson-Walker geometry. In particular, we find the most general spatially homogeneous and isotropic Berwald spacetimes, which are Finsler spacetimes that can be regarded as closest to pseudo-Riemannian geometry. They are defined by a Finsler Lagrangian built from a zero-homogeneous function on the tangent bundle, which encodes the velocity dependence of the Finsler Lagrangian in a very specific way. The obtained cosmological Berwald geometries are candidates for the description of the geometry of the universe, when they are obtained as solutions from a Finsler gravity equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源