论文标题
轻型无菌中微子质量的界限以及宇宙学和实验室搜索的混合
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches
论文作者
论文摘要
我们提供了一个一致的框架,以通过最新的宇宙学数据和从振荡($β$ -Decay and netminoless double-β$ decay($0νββ$)实验的结合($β$ -DECAY)和中微子中性剂量的实验来设定限制光无菌中微子的性能与所有三个活动中微子的效果。我们直接限制了整个$ 3+1 $ Active-Sterile Mixing Matrix Elements $ | U _ {\ Alpha4} |^2 $,并带有$α\ in(e,μ,μ,τ)$,以及质量为spred $Δm^2_ {41} {41}} \ equiv m_4^2-m_4^2-m_1^2 $。我们发现,$ 3+1 $的情况的结果与先前研究的$ 1+1 $方案不同,在这些情况下,无菌仅与其中一个中微子耦合,这在很大程度上由参数空间量效应来解释。质量分裂和混合矩阵元素的限制目前由宇宙学数据集主导。确切的结果略有依赖性,但是我们可靠地发现所有矩阵元素都在$ | u _ {\ alpha4} |^2 \ sillesim 10^{ - 3} $下方约束。 短基线中微子振荡提示,有利于EV级无菌中微子的中微子对这些界限有严重的张力,而与先前的假设无关。我们还将界限分析的边界转化为对实验室搜索探索的参数的约束,例如$m_β$或$ m_ {ββ} $,分别由$β$ -Decay和$0νβ$搜索探索的有效质量参数。当允许与光无菌中微子混合时,宇宙学会导致$M_β<0.09 $ eV和$ M_ {ββ} <0.07 $ eV的上限,<0.07 $ eV在95 \%c.l,比当前实验室实验的限制更为严格。
We provide a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, $β$-decay and neutrinoless double-$β$ decay ($0νββ$) experiments. We directly constrain the full $3+1$ active-sterile mixing matrix elements $|U_{\alpha4}|^2$, with $α\in ( e,μ,τ)$, and the mass-squared splitting $Δm^2_{41} \equiv m_4^2-m_1^2$. We find that results for a $3+1$ case differ from previously studied $1+1$ scenarios where the sterile is only coupled to one of the neutrinos, which is largely explained by parameter space volume effects. Limits on the mass splitting and the mixing matrix elements are currently dominated by the cosmological data sets. The exact results are slightly prior dependent, but we reliably find all matrix elements to be constrained below $|U_{\alpha4}|^2 \lesssim 10^{-3}$. Short-baseline neutrino oscillation hints in favor of eV-scale sterile neutrinos are in serious tension with these bounds, irrespective of prior assumptions. We also translate the bounds from the cosmological analysis into constraints on the parameters probed by laboratory searches, such as $m_β$ or $m_{ββ}$, the effective mass parameters probed by $β$-decay and $0νββ$ searches, respectively. When allowing for mixing with a light sterile neutrino, cosmology leads to upper bounds of $m_β< 0.09$ eV and $m_{ββ} < 0.07$ eV at 95\% C.L, more stringent than the limits from current laboratory experiments.