论文标题

与熵链规则相关的广义多项式系数的同源表征

A homological characterization of generalized multinomial coefficients related to the entropic chain rule

论文作者

Vigneaux, Juan Pablo

论文摘要

多项式系数之间的乘法关系与香农熵的(添加)复发特性之间存在渐近关系,称为链条规则。我们表明,两种类型的身份都是独特的代数结构的表现:\ emph {信息共同体学中的$ 1 $ - 循环条件,这是\ emph {信息结构}模块的代数不变的代数}(可观察类别)。鲍多特(Baudot)和本尼奎因(Bennequin)引入了这一共同体,并证明香农熵代表了$ 1 $ $ 1 $的唯一非平凡的同谋类,而系数是概率功能的天然预性。作者后来获得了该预毛的变形型$ 1 $ - 参数家族,以使每个Tsallis $α$ -Entropy似乎是与参数$α$相关的唯一$ 1 $ cocycle。在本文中,我们介绍了\ emph {Combinatorial函数}的新预层次,它是整数有限阵列的可测量函数;这些阵列代表与随机实验相关的\ emph {直方图}。在这种情况下,$ 0 $ $ 0 $的唯一共同学课是由指数函数生成的,$ 1 $ - 循环是Fontené-Ward-Ward广义多项式系数。作为副产品,我们获得了特征在于广义二项式系数的信息理论基本方程的简单组合类似物。上面提到的渐近关系扩展到了某些广义多项式系数与任何$α$ - entropy之间的对应关系,这些系数及其链条规则的含义及其变形介绍了新的启示。

There is an asymptotic relationship between the multiplicative relations among multinomial coefficients and the (additive) recurrence property of Shannon entropy known as the chain rule. We show that both types of identities are manifestations of a unique algebraic construction: a $1$-cocycle condition in \emph{information cohomology}, an algebraic invariant of phesheaves of modules on \emph{information structures} (categories of observables). Baudot and Bennequin introduced this cohomology and proved that Shannon entropy represents the only nontrivial cohomology class in degree $1$ when the coefficients are a natural presheaf of probabilistic functionals. The author obtained later a $1$-parameter family of deformations of that presheaf, in such a way that each Tsallis $α$-entropy appears as the unique $1$-cocycle associated to the parameter $α$. In this article, we introduce a new presheaf of \emph{combinatorial functionals}, which are measurable functions of finite arrays of integers; these arrays represent \emph{histograms} associated to random experiments. In this case, the only cohomology class in degree $0$ is generated by the exponential function and $1$-cocycles are Fontené-Ward generalized multinomial coefficients. As a byproduct, we get a simple combinatorial analogue of the fundamental equation of information theory that characterizes the generalized binomial coefficients. The asymptotic relationship mentioned above is extended to a correspondence between certain generalized multinomial coefficients and any $α$-entropy, that sheds new light on the meaning of the chain rule and its deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源