论文标题

在一般相对论的三维模拟中,由中微子加热支持的巨大恒星的磁性爆炸

Magnetorotational Explosion of A Massive Star Supported by Neutrino Heating in General Relativistic Three Dimensional Simulations

论文作者

Kuroda, Takami, Arcones, Almudena, Takiwaki, Tomoya, Kotake, Kei

论文摘要

我们介绍了三维(3D),辐射 - 磁性水力动力学(MHD)模拟核心偏离超新星,并具有光谱中微子转运的全身相对论(GR)。为了研究祖细胞的旋转和磁场的影响,我们计算了三个模型,其中将前旋转速率和磁场以参数包含在20 m $ $ _ {\ odot} $ star中。尽管在模拟时间(弹跳后$ \ sim500 $ ms)中,我们在两个非磁性模型中没有发现休克复兴,但在我们快速旋转和强烈磁性磁化模型中反弹后,磁化(MR)驱动的冲击膨胀在磁性(MR)驱动的冲击膨胀中立即启动。我们表明,MR驱动的流向极性方向的扩展主要是由磁性驱动的,而向赤道方向的冲击膨胀得到了中微子加热的支持。我们的详细分析表明,所谓的纠结不稳定性的增长可能会妨碍喷气机的准则,从而形成更广泛的流出。此外,我们发现Lepton数的偶极子发射仅在MR爆炸模型中,其不对称性与爆炸形态一致。尽管它与Lepton-number发射自我维持的不对称性(LESA)相似,但我们的分析表明,偶极子发射不是来自质子恒星对流区,而是来自中微子的上微子领域,表明它与LESA无关。我们还报告了几个独特的中微子特征,这些签名显着取决于时间和视角,如果观察到,可能会提供有关MR驱动爆炸发作的丰富信息。

We present results of three-dimensional (3D), radiation-magnetohydrodynamics (MHD) simulations of core-collapse supernovae in full general relativity (GR) with spectral neutrino transport. In order to study the effects of progenitor's rotation and magnetic fields, we compute three models, where the precollapse rotation rate and magnetic fields are included parametrically to a 20 M$_{\odot}$ star. While we find no shock revival in our two non-magnetized models during our simulation times ($\sim500$ ms after bounce), the magnetorotationally (MR) driven shock expansion immediately initiates after bounce in our rapidly rotating and strongly magnetized model. We show that the expansion of the MR-driven flows toward the polar directions is predominantly driven by the magnetic pressure, whereas the shock expansion toward the equatorial direction is supported by neutrino heating. Our detailed analysis indicates that the growth of the so-called kink instability may hinder the collimation of jets, resulting in the formation of broader outflows. Furthermore we find a dipole emission of lepton number, only in the MR explosion model, whose asymmetry is consistent with the explosion morphology. Although it is similar to the lepton-number emission self-sustained asymmetry (LESA), our analysis shows that the dipole emission occurs not from the protoneutron star convection zone but from above the neutrino sphere indicating that it is not associated with the LESA. We also report several unique neutrino signatures, which are significantly dependent on both the time and the viewing angle, if observed, possibly providing a rich information regarding the onset of the MR-driven explosion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源