论文标题
使用虚拟可穿戴传感器的复杂人类活动识别的深度学习方法
A Deep Learning Method for Complex Human Activity Recognition Using Virtual Wearable Sensors
论文作者
论文摘要
基于传感器的人类活动识别(HAR)现在是多个应用领域的研究热点。随着配备惯性测量单元(IMU)的智能可穿戴设备的兴起,研究人员开始利用IMU数据进行HAR。通过采用机器学习算法,基于IMU的早期研究可以在传统的古典HAR数据集上获得准确的分类结果,仅包含简单而重复的日常活动。但是,这些数据集很少在实际场景中显示出丰富的信息。在本文中,我们提出了一种基于对现实场景中复杂HAR的深度学习的新颖方法。特别是,在离线培训阶段,包含丰富的人类姿势和虚拟IMU数据的Amass数据集可用于增强多样性和多样性。此外,提出了一个无监督惩罚的深卷积神经网络,以自动提取积极的特征并改善鲁棒性。在在线测试阶段,通过利用转移学习的优势,我们通过使用真实的IMU数据来微调部分神经网络(优化完全连接的层中的参数)来获得最终结果。实验结果表明,所提出的方法可以出人意料地进行一些迭代,并在真实IMU数据集上获得91.15%的精度,这证明了所提出方法的效率和有效性。
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas. With the rise of smart wearable devices equipped with inertial measurement units (IMUs), researchers begin to utilize IMU data for HAR. By employing machine learning algorithms, early IMU-based research for HAR can achieve accurate classification results on traditional classical HAR datasets, containing only simple and repetitive daily activities. However, these datasets rarely display a rich diversity of information in real-scene. In this paper, we propose a novel method based on deep learning for complex HAR in the real-scene. Specially, in the off-line training stage, the AMASS dataset, containing abundant human poses and virtual IMU data, is innovatively adopted for enhancing the variety and diversity. Moreover, a deep convolutional neural network with an unsupervised penalty is proposed to automatically extract the features of AMASS and improve the robustness. In the on-line testing stage, by leveraging advantages of the transfer learning, we obtain the final result by fine-tuning the partial neural network (optimizing the parameters in the fully-connected layers) using the real IMU data. The experimental results show that the proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset, demonstrating the efficiency and effectiveness of the proposed method.