论文标题

太阳耀斑预测的新方法

A New Approach to Solar Flare Prediction

论文作者

Goodman, Michael L., Kwan, Chiman, Ayhan, Bulent, Shang, Eric L.

论文摘要

由于游离磁能耗散而导致的加热速率,当前密度的所有三个组件均需要。在这里,我们提出了开发的新模型的首次测试,以确定活性区域(AR)光电中电阻加热速率增加的时间是否与随后的Corona中M和X耀斑的发生相关。数据驱动的3天驱动的非磁性磁水动力学模型仅限于近光层区域,用于计算每个像素的中性线(NLRS)中每个像素的全单位密度$(q(t))$的完全电流密度的时间序列和14 ARS的每个像素的电阻加热速率。该模型是由磁场$ {\ bf b} $的时间序列驱动的,由太阳能动力学天文台(SDO)卫星上的Helioseissic&Magnetic Imager测量。在每个AR像素中,由于SDO轨道运动而引起的虚假多普勒周期以$ {\ bf b} $中的时间序列过滤。对于每个AR,发现NLR面积积分$ q_i(t)$ $ q(t)$的累积分布函数(CDF)被认为是比例尺不变的功率定律分布基本上与观察到的CDF相同,用于冠状耀斑中释放的总能量。这表明冠状耀斑和光弹$ q_i $是相关的,并由相同的过程提供动力。该模型预测$ q_i $的峰值,其值高于背景值的值。这些尖峰是由当前密度的非强制性组件中的尖峰驱动的。这些尖峰的时间与几个小时到几天后的M或X耀斑的时间合理地相关。峰值出现在肉芽尺度上,可能是水平电流板上加热的签名。还发现,NLR无符号磁通量变化速率的相对较大的时代也与随后的M和X耀斑的时间合理地相关,而SPIKES则为$ q_i $。

All three components of the current density are required to compute the heating rate due to free magnetic energy dissipation. Here we present a first test of a new model developed to determine if the times of increases in the resistive heating rate in active region (AR) photospheres are correlated with the subsequent occurrence of M and X flares in the corona. A data driven, 3 D, non-force-free magnetohydrodynamic model restricted to the near-photospheric region is used to compute time series of the complete current density and the resistive heating rate per unit volume $(Q(t))$ in each pixel in neutral line regions (NLRs) of 14 ARs. The model is driven by time series of the magnetic field ${\bf B}$ measured by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for ${\bf B}$ in every AR pixel. For each AR, the cumulative distribution function (CDF) of the values of the NLR area integral $Q_i(t)$ of $Q(t)$ is found to be a scale invariant power law distribution essentially identical to the observed CDF for the total energy released in coronal flares. This suggests that coronal flares and the photospheric $Q_i$ are correlated, and powered by the same process. The model predicts spikes in $Q_i$ with values orders of magnitude above background values. These spikes are driven by spikes in the non-force free component of the current density. The times of these spikes are plausibly correlated with times of subsequent M or X flares a few hours to a few days later. The spikes occur on granulation scales, and may be signatures of heating in horizontal current sheets. It is also found that the times of relatively large values of the rate of change of the NLR unsigned magnetic flux are also plausibly correlated with the times of subsequent M and X flares, and spikes in $Q_i$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源