论文标题

Rodnet:使用跨模式监督的雷达对象检测

RODNet: Radar Object Detection Using Cross-Modal Supervision

论文作者

Wang, Yizhou, Jiang, Zhongyu, Gao, Xiangyu, Hwang, Jenq-Neng, Xing, Guanbin, Liu, Hui

论文摘要

在严重的驾驶场景中,雷达通常比相机更强大,例如弱/强烈的照明和恶劣的天气。但是,与相机捕获的RGB图像不同,来自雷达信号的语义信息很难提取。在本文中,我们提出了一个深度雷达对象检测网络(RODNET),以有效地从范围--齐亚频率热图(RAMAPS)格式的经过精心处理的雷达频率数据(RAMAPS)的格式中进行有效检测。引入了三个不同的基于3D自动编码器的架构,以预测输入RAMAPS每个片段的对象置信分布。然后使用我们的后处理方法计算最终检测结果,称为基于位置的非最大抑制(L-NMS)。我们不使用繁重的人类标记的地面真理,而是使用使用摄像机雷达融合(CRF)策略自动生成的注释来训练Rodnet。为了培训和评估我们的方法,我们构建了一个新的数据集 - 在各种驾驶场景中包含同步视频和Ramaps的新数据集。经过密集的实验后,我们的底网在不存在相机的情况下显示出有利的对象检测性能。

Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract. In this paper, we propose a deep radar object detection network (RODNet), to effectively detect objects purely from the carefully processed radar frequency data in the format of range-azimuth frequency heatmaps (RAMaps). Three different 3D autoencoder based architectures are introduced to predict object confidence distribution from each snippet of the input RAMaps. The final detection results are then calculated using our post-processing method, called location-based non-maximum suppression (L-NMS). Instead of using burdensome human-labeled ground truth, we train the RODNet using the annotations generated automatically by a novel 3D localization method using a camera-radar fusion (CRF) strategy. To train and evaluate our method, we build a new dataset -- CRUW, containing synchronized videos and RAMaps in various driving scenarios. After intensive experiments, our RODNet shows favorable object detection performance without the presence of the camera.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源