论文标题

高斯 - 牛顿展开的神经网络和数据驱动的先验,适用于正规PSSE

Gauss-Newton Unrolled Neural Networks and Data-driven Priors for Regularized PSSE with Robustness

论文作者

Yang, Qiuling, Sadeghi, Alireza, Wang, Gang, Giannakis, Georgios B., Sun, Jian

论文摘要

分布式可再生生成,弹性负载以及对仪表读数的有目的操纵挑战了对当今电力系统(PS)的监视和控制。在这种情况下,要实时保持对系统的全面视图,迫切需要快速,稳健的状态估计(SE)方法。常规的PSSE求解器通常需要最大程度地减少通过Horkhorse Gauss-Newton方法来最大程度地降低非线性和最小二乘。但是,那些迭代的求解器对初始化敏感,并且可能被卡在局部最小值中。为了克服这些障碍并受到最新图像Denoising技术的启发,本文提倡对PSSE的可学习正则化术语,该术语使用了深度神经网络(DNN)。对于由此产生的正规PSSE问题,首先开发了“高斯 - 纽顿”交替的最小化求解器。为了适应实时监控,通过展开所提出的交替最小化求解器来构建一种新型的端到端DNN。有趣的是,通过设计基于图形神经网络(GNN)先验,可以轻松地将功率网络拓扑结合到DNN中。为了进一步赋予基于物理的DNN,以抗差数据的鲁棒性,讨论了一种对抗性DNN训练方法。与几种最先进的替代方案相比,使用IEEE $ 118 $ -BUS基准系统使用真实负载数据进行的数值测试展示了提出的方案的估计和稳健性性能。

Distributed renewable generation, elastic loads, and purposeful manipulation of meter readings challenge the monitoring and control of today's power systems (PS). In this context, to maintain a comprehensive view of the system in real time, fast and robust state estimation (SE) methods are urgently needed. Conventional PSSE solvers typically entail minimizing a nonlinear and nonconvex least-squares by e.g., the workhorse Gauss-Newton method. Those iterative solvers however, are sensitive to initialization and may get stuck in local minima. To overcome these hurdles and inspired by recent image denoising techniques, this paper advocates a learnable regularization term for PSSE that uses a deep neural network (DNN) prior. For the resultant regularized PSSE problem, a "Gauss-Newton-like" alternating minimization solver is first developed. To accommodate real-time monitoring, a novel end-to-end DNN is constructed by unrolling the proposed alternating minimization solver. Interestingly, the power network topology can be easily incorporated into the DNN by designing a graph neural network (GNN) based prior. To further endow the physics-based DNN with robustness against bad data, an adversarial DNN training method is discussed. Numerical tests using real load data on the IEEE $118$-bus benchmark system showcase the improved estimation and robustness performance of the proposed scheme compared with several state-of-the-art alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源