论文标题
核系统大小通过使用多相传输模型在相对论重型离子碰撞中扫描冻结特性
Nuclear system size scan for freeze-out properties in relativistic heavy-ion collisions by using a multiphase transport model
论文作者
论文摘要
最近提出了针对相对论重离子对撞机(RHIC)的Star实验的系统大小扫描程序。在这项研究中,我们采用多相传输(AMPT)模型来考虑在冻结阶段的批量特性,以$ \ m athrm {^{10} b+^{10} b} $,$ \ mathrm {^^^{12} {12} c+^{12} c+^{12} {12} c} c} c} $,$ \ \ \ \ \ \ \ \ m rmm {16} 16}} $ \ mathrm {^{20} ne+^{20} ne} $,$ \ mathrm {^{40} ca+^{40} ca} $,$ \ mathrm {^{96} Zr+^{96} Zr} Rhic Energies $ \ sqrt {s_ {nn}} $ 200、20和7.7 GEV。 $ \ mathrm {^{^{197} au+^{197} au} $碰撞的结果与以前的实验恒星数据的结果相当。还讨论了基于爆炸波模型的横向动量$ p_ {t} $光谱($π^{\ pm} $,$ k^{\ pm} $,$ p $和$ \ bar {p} $)。此外,我们使用统计热模型在化学冷冻阶段提取参数,这与其他热模型计算的参数一致。发现动力学冻结参数$ t_ {kin} $与径向扩展速度$β_{T} $之间存在竞争关系,这也与星星或爱丽丝的结果一致。我们发现化学冷冻陌生潜力$μ__{s} $在所有碰撞系统中均保持恒定,并且火球半径$ r $由$ \ left \ left \ langle \ langle \ mathrm {n_ {part}} \ right \ rangle $,可以由$ a \ aft a \ aft \ aft \ langle \ langle \ langle langle langle \ langle \ langle $良好。 \ Mathrm {n_ {part}} \ right \ rangle^{b} $,带有$ b \ oft 1/3 $。此外,我们计算了相对于$ \ mathrm {{}^{10} + \ mathrm {{{}^{10} b} $系统的不同碰撞系统的核修饰因子,并发现它们在较高的$ p_ {t} $范围内呈逐渐抑制。
A system size scan program was recently proposed for the STAR experiments at the Relativistic Heavy Ion Collider(RHIC). In this study, we employ a multiphase transport (AMPT) model for considering the bulk properties at the freeze-out stage for $\mathrm{^{10}B+^{10}B}$, $\mathrm{^{12}C+^{12}C}$, $\mathrm{^{16}O+^{16}O}$, $\mathrm{^{20}Ne+^{20}Ne}$, $\mathrm{^{40}Ca+^{40}Ca}$, $\mathrm{^{96}Zr+^{96}Zr}$, and $\mathrm{^{197}Au+^{197}Au}$ collisions at RHIC energies $\sqrt{s_{NN}}$ of 200, 20, and 7.7 GeV. The results for $\mathrm{^{197}Au+^{197}Au}$ collisions are comparable with those of previous experimental STAR data. The transverse momentum $p_{T}$ spectra of charged particles ($π^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$) at the kinetic freeze-out stage, based on a blast-wave model, are also discussed. In addition, we use a statistical thermal model to extract the parameters at the chemical freeze-out stage, which agree with those from other thermal model calculations. It was found that there is a competitive relationship between the kinetic freeze-out parameter $T_{kin}$ and the radial expansion velocity $β_{T}$, which also agrees with the STAR or ALICE results. We found that the chemical freeze-out strangeness potential $μ_{s}$ remains constant in all collision systems and that the fireball radius $R$ is dominated by $\left\langle \mathrm{N_{Part}}\right\rangle$, which can be well fitted by a function of $a \left\langle \mathrm{N_{Part}}\right\rangle^{b}$ with $b \approx 1/3$. In addition, we calculated the nuclear modification factors for different collision systems with respect to the $ \mathrm{{}^{10}B} + \mathrm{{}^{10}B}$ system, and found that they present a gradual suppression within a higher $p_{T}$ range from small to large systems.