论文标题
化学反应网络分解和S系统的实现
Chemical reaction network decompositions and realizations of S-systems
论文作者
论文摘要
本文介绍了从S系统动力学衍生的化学反应网络(CRN)的新型分解类。基于Feinberg于1987年发起的网络分解理论,我们介绍了发病率独立分解的概念,并开发了$ \ Mathscr {C} $ - 和$ \ Mathscr {c}^*$ - 分别分区的复合体和非零复合体集合(包括其结构的结构),包括链接的链接,该理论包括linkage nickage oferems oferems,类似于Feinberg的独立分解,我们证明了复杂平衡平衡集之间的重要关系,用于对任何动力学的发病率独立分解。我们表明$ \ Mathscr {C}^*$ - 分解也与发病率无关。我们还在本文中介绍了一个新的S-System的新实现,该系统使用新定义的一类可覆盖的CRN进行分析。这导致了不足公式的扩展和物种可分解反应网络的基本分解的表征。
This paper presents novel decomposition classes of chemical reaction networks (CRNs) derived from S-system kinetics. Based on the network decomposition theory initiated by Feinberg in 1987, we introduce the concept of incidence independent decompositions and develop the theory of $\mathscr{C}$- and $\mathscr{C}^*$- decompositions which partition the set of complexes and the set of nonzero complexes respectively, including their structure theorems in terms of linkage classes. Analogous to Feinberg's independent decomposition, we demonstrate the important relationship between sets of complex balance equilibria for an incidence independent decomposition of weakly reversible subnetworks for any kinetics. We show that the $\mathscr{C}^*$-decompositions are also incidence independent. We also introduce in this paper a new realization for an S-system that is analyzed using a newly defined class of species coverable CRNs. This led to the extension of the deficiency formula and characterization of fundamental decompositions of species decomposable reaction networks.