论文标题
检测:用于移动性行为分析的深轨迹聚类
DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis
论文作者
论文摘要
在包括城市规划,市场营销和情报在内的各种应用程序中,识别丰富轨迹数据中的流动性行为具有极大的经济和社会利益。轨迹聚类的现有工作通常依赖于利用轨迹的原始空间和/或时间信息的相似性测量。这些措施无法识别出表现出不同时空运动尺度的相似运动行为。此外,标记大量轨迹数据的费用是监督学习模型的障碍。为了应对这些挑战,我们提出了一种无监督的神经方法,以进行移动性行为聚类,称为深嵌入轨迹聚类网络(检测)。检测分为三个部分:首先,它通过汇总其关键部分并通过从其地理区域(例如,使用Gazetteers的Pois)衍生出的上下文来改变轨迹。在第二部分中,它学习了行为潜在空间中轨迹的强大表示,从而实现了群集功能(例如$ k $ -Means)。最后,直接建立在嵌入式特征上以共同执行特征细化和集群分配,从而提高了移动性行为之间的可分离性。在两个现实世界数据集上进行的详尽定量和定性实验证明了我们对移动行为分析的有效性。
Identifying mobility behaviors in rich trajectory data is of great economic and social interest to various applications including urban planning, marketing and intelligence. Existing work on trajectory clustering often relies on similarity measurements that utilize raw spatial and/or temporal information of trajectories. These measures are incapable of identifying similar moving behaviors that exhibit varying spatio-temporal scales of movement. In addition, the expense of labeling massive trajectory data is a barrier to supervised learning models. To address these challenges, we propose an unsupervised neural approach for mobility behavior clustering, called the Deep Embedded TrajEctory ClusTering network (DETECT). DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality (e.g., using POIs from gazetteers). In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$-means) to be applied. Finally, a clustering oriented loss is directly built on the embedded features to jointly perform feature refinement and cluster assignment, thus improving separability between mobility behaviors. Exhaustive quantitative and qualitative experiments on two real-world datasets demonstrate the effectiveness of our approach for mobility behavior analyses.