论文标题

异质图变压器

Heterogeneous Graph Transformer

论文作者

Hu, Ziniu, Dong, Yuxiao, Wang, Kuansan, Sun, Yizhou

论文摘要

近年来见证了图神经网络(GNN)在建模结构化数据中的新兴成功。但是,大多数GNN都是为均匀图设计的,其中所有节点和边缘都属于相同类型,使它们不可避免地代表异质结构。在本文中,我们介绍了用于建模网络尺度异质图的异质图变压器(HGT)体系结构。为了建模异质性,我们设计了依赖性参数,以表征每个边缘上的异质注意力,从而赋予HGT以维护不同类型的节点和边缘的专用表示。为了处理动态异质图,我们将相对时间编码技术引入HGT,该技术能够以任意持续时间捕获动态结构依赖性。要处理网络尺度的图形数据,我们设计了异质的迷你批次图采样算法--- HGSAPLING ---用于高效且可扩展的培训。在1.79亿个节点和20亿个边缘的开放学术图上进行了广泛的实验表明,拟议的HGT模型始终在各种下游任务上胜过所有最新的GNN Baselines的最先进的GNN基本线。

Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node- and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%--21% on various downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源