论文标题

对基于脑电图的运动图像分类的关注很少的关系学习

Few-Shot Relation Learning with Attention for EEG-based Motor Imagery Classification

论文作者

An, Sion, Kim, Soopil, Chikontwe, Philip, Park, Sang Hyun

论文摘要

基于脑电图(EEG)信号的脑部计算机界面(BCI),特别是汽车成像(MI)数据已引起了很多关注,并显示了在医疗保健和其他行业中设计关键技术的潜力。当一个主题想象四肢运动时,就会生成MI数据,并且可以用于帮助康复以及自主驾驶场景。因此,MI信号的分类对于基于EEG的BCI系统至关重要。最近,使用深度学习的MI EEG分类技术表明,与传统技术相比,性能提高了。但是,由于受试者间的可变性,看不见的主题数据的稀缺性以及信噪比较低,提取稳健的特征和提高准确性仍然具有挑战性。在这种情况下,我们提出了一个新颖的双向射击网络,能够有效地学习如何学习看不见的主题类别的代表性特征以及如何使用有限的MI EEG数据对它们进行分类。该管道包括一个嵌入模块,该模块从一组样本中学习特征表示,关键信号特征发现的注意机制以及基于支持集和查询信号之间的关系分数的最终分类的关系模块。除了统一学习功能相似性和一些Shot分类器外,我们的方法还导致强调与查询数据相关的支持数据的信息功能,该功能可以更好地概括在看不见的主题上。为了进行评估,我们使用了BCI竞争IV 2B数据集,并通过最先进的性能提高了20次分类任务的准确性9.3%。实验结果证明了采用注意力的有效性和我们方法的总体通用性。

Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals, in particular motor imagery (MI) data have received a lot of attention and show the potential towards the design of key technologies both in healthcare and other industries. MI data is generated when a subject imagines movement of limbs and can be used to aid rehabilitation as well as in autonomous driving scenarios. Thus, classification of MI signals is vital for EEG-based BCI systems. Recently, MI EEG classification techniques using deep learning have shown improved performance over conventional techniques. However, due to inter-subject variability, the scarcity of unseen subject data, and low signal-to-noise ratio, extracting robust features and improving accuracy is still challenging. In this context, we propose a novel two-way few shot network that is able to efficiently learn how to learn representative features of unseen subject categories and how to classify them with limited MI EEG data. The pipeline includes an embedding module that learns feature representations from a set of samples, an attention mechanism for key signal feature discovery, and a relation module for final classification based on relation scores between a support set and a query signal. In addition to the unified learning of feature similarity and a few shot classifier, our method leads to emphasize informative features in support data relevant to the query data, which generalizes better on unseen subjects. For evaluation, we used the BCI competition IV 2b dataset and achieved an 9.3% accuracy improvement in the 20-shot classification task with state-of-the-art performance. Experimental results demonstrate the effectiveness of employing attention and the overall generality of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源