论文标题
RandomNet:迈向多模式学习的全自动神经体系结构设计
RandomNet: Towards Fully Automatic Neural Architecture Design for Multimodal Learning
论文作者
论文摘要
几乎所有神经体系结构搜索方法都是根据所找到的模型结构的性能(即测试准确性)评估的。它应该是唯一的良好汽车方法的指标吗?为了检查超出性能的方面,我们提出了一组旨在评估汽车问题核心的标准:将这些方法部署到现实世界情景中所需的人类干预量。根据我们提出的评估清单,我们研究了随机搜索策略对全自动自动化多模式架构搜索的有效性。与依靠手动制作的功能提取器的传统方法相比,我们的方法从大型搜索空间中选择了每种模式,并以最少的人为监督选择。我们表明,我们提出的随机搜索策略在AV-MNIST数据集上靠近最新技术,同时满足了全自动设计过程的理想特征。
Almost all neural architecture search methods are evaluated in terms of performance (i.e. test accuracy) of the model structures that it finds. Should it be the only metric for a good autoML approach? To examine aspects beyond performance, we propose a set of criteria aimed at evaluating the core of autoML problem: the amount of human intervention required to deploy these methods into real world scenarios. Based on our proposed evaluation checklist, we study the effectiveness of a random search strategy for fully automated multimodal neural architecture search. Compared to traditional methods that rely on manually crafted feature extractors, our method selects each modality from a large search space with minimal human supervision. We show that our proposed random search strategy performs close to the state of the art on the AV-MNIST dataset while meeting the desirable characteristics for a fully automated design process.