论文标题

解释引导的后门中毒攻击针对恶意软件分类器

Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers

论文作者

Severi, Giorgio, Meyer, Jim, Coull, Scott, Oprea, Alina

论文摘要

基于机器学习的培训管道(ML)的恶意软件分类通常依赖于众包的威胁饲料,从而暴露了自然攻击注入点。在本文中,我们研究了基于功能的ML恶意软件分类器对后门中毒攻击的敏感性,专门针对挑战“清洁标签”攻击,而攻击者无法控制样本标签过程。我们建议使用可解释的机器学习的技术来指导相关特征和价值观的选择,以创建有效的后门触发器,以模型 - 不合Snostic的方式。使用多个参考数据集进行恶意软件分类,包括Windows PE文件,PDF和Android应用程序,我们展示了针对各种机器学习模型的有效攻击,并评估对攻击者施加的各种约束的影响。为了证明在实践中我们的后门攻击的可行性,我们为Windows PE文件创建了一个水印实用程序,该文件可保留二进制功能,我们利用了Android和PDF文件的类似行为保护的更改方法。最后,我们尝试了潜在的防御策略,并显示了完全防御这些攻击的困难,尤其是当攻击与合法样本分布融合时。

Training pipelines for machine learning (ML) based malware classification often rely on crowdsourced threat feeds, exposing a natural attack injection point. In this paper, we study the susceptibility of feature-based ML malware classifiers to backdoor poisoning attacks, specifically focusing on challenging "clean label" attacks where attackers do not control the sample labeling process. We propose the use of techniques from explainable machine learning to guide the selection of relevant features and values to create effective backdoor triggers in a model-agnostic fashion. Using multiple reference datasets for malware classification, including Windows PE files, PDFs, and Android applications, we demonstrate effective attacks against a diverse set of machine learning models and evaluate the effect of various constraints imposed on the attacker. To demonstrate the feasibility of our backdoor attacks in practice, we create a watermarking utility for Windows PE files that preserves the binary's functionality, and we leverage similar behavior-preserving alteration methodologies for Android and PDF files. Finally, we experiment with potential defensive strategies and show the difficulties of completely defending against these attacks, especially when the attacks blend in with the legitimate sample distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源