论文标题

风险差异隐私:弥合随机性和隐私预算

Differential Privacy at Risk: Bridging Randomness and Privacy Budget

论文作者

Dandekar, Ashish, Basu, Debabrota, Bressan, Stephane

论文摘要

隐私机制的噪声校准取决于查询的灵敏度和规定的隐私级别。数据管家必须对隐私级别的非平凡选择,以平衡用户的要求和业务实体的货币约束。我们分析了随机性来源的作用,即由噪声分布引起的显式随机性以及由数据生成分布引起的隐式随机性,这些随机性与隐私保护机制的设计有关。精细的分析使我们能够通过可量化的风险提供更强大的隐私保证。因此,我们提出有风险的隐私,这是对隐私机制的概率校准。我们提供了利用有风险的隐私的组成定理。我们通过提供分析结果来实例化拉普拉斯机制的概率校准。我们还提出了一个成本模型,该模型弥合了符合GDPR的业务实体估计的隐私水平和薪酬预算之间的差距。拟议的成本模型的凸面导致对隐私水平的独特微调,从而最大程度地减少了薪酬预算。我们通过说明现实的情况来展示其有效性,该场景通过利用有风险的拉普拉斯机制风险来避免高估薪酬预算。我们定量地表明,使用成本最佳隐私在风险中的组成比经典高级构图提供了更强的隐私保证。

The calibration of noise for a privacy-preserving mechanism depends on the sensitivity of the query and the prescribed privacy level. A data steward must make the non-trivial choice of a privacy level that balances the requirements of users and the monetary constraints of the business entity. We analyse roles of the sources of randomness, namely the explicit randomness induced by the noise distribution and the implicit randomness induced by the data-generation distribution, that are involved in the design of a privacy-preserving mechanism. The finer analysis enables us to provide stronger privacy guarantees with quantifiable risks. Thus, we propose privacy at risk that is a probabilistic calibration of privacy-preserving mechanisms. We provide a composition theorem that leverages privacy at risk. We instantiate the probabilistic calibration for the Laplace mechanism by providing analytical results. We also propose a cost model that bridges the gap between the privacy level and the compensation budget estimated by a GDPR compliant business entity. The convexity of the proposed cost model leads to a unique fine-tuning of privacy level that minimises the compensation budget. We show its effectiveness by illustrating a realistic scenario that avoids overestimation of the compensation budget by using privacy at risk for the Laplace mechanism. We quantitatively show that composition using the cost optimal privacy at risk provides stronger privacy guarantee than the classical advanced composition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源