论文标题

IRS辅助多电池误差系统的最大最大公平性,具有关节传输和反射性光束形成

Max-Min Fairness in IRS-Aided Multi-Cell MISO Systems with Joint Transmit and Reflective Beamforming

论文作者

Xie, Hailiang, Xu, Jie, Liu, Ya-Feng

论文摘要

本文调查了一个智能反射表面(IRS)的多核多输入单输出(MISO)系统,该系统具有多个多Aantenna基站(BSS),每个系统都与单个Antenna用户进行通信,其中IRS专用于无线传输和抑制细胞间干扰。在此设置下,我们共同优化了BSS处的协调发射光束和IRS处的反射性光束,目的是最大化用户的最小加权信号与互发式互发率(SINR),以BSS和IRS的反射约束在BSS和反射约束处受到单个最大发射功率。为了解决非凸问题,我们首先提出了精确的优化设计设计,以交替的方式优化发射和反射性的光束形成向量,其中通过使用半降低弛豫的技术(SDR)来精确地溶解发射和反射光束优化的优化子问题。但是,它具有较高的计算复杂性,并且由于SDR中随机化的不确定性,可能导致性能受到损害。为了避免这些缺点,我们进一步提出了一种不可过滤的优化设计,其中,基于连续的凸近似值(SCA)的原理,将发射和反射性光束成型的优化子问题不截然不避。此外,为了进一步降低复杂性,我们提出了一个低复杂性不过敏的优化设计,其中反射光束成立优化的子问题更加不确定。数值结果表明,提议的三种设计针对基准方案实现了显着的性能提高。此外,就实现的最小加权sinr值和计算复杂性而言,不精确的优化设计优于精确的优化一个优于优于优化的设计。

This paper investigates an intelligent reflecting surface (IRS)-aided multi-cell multiple-input single-output (MISO) system with several multi-antenna base stations (BSs) each communicating with a single-antenna user, in which an IRS is dedicatedly deployed for assisting the wireless transmission and suppressing the inter-cell interference. Under this setup, we jointly optimize the coordinated transmit beamforming at the BSs and the reflective beamforming at the IRS, for the purpose of maximizing the minimum weighted signal-to-interference-plus-noise ratio (SINR) at the users, subject to the individual maximum transmit power at the BSs and the reflection constraints at the IRS. To solve the non-convex problem, we first present an exact-alternating-optimization design to optimize the transmit and reflective beamforming vectors in an alternating manner, in which the transmit and reflective beamforming optimization subproblems are solved exactly by using the technique of semi-definite relaxation (SDR). However, it has high computational complexity and may lead to compromised performance due to the uncertainty of randomization in SDR. To avoid these drawbacks, we further propose an inexact-alternating-optimization design, in which the transmit and reflective beamforming optimization subproblems are solved inexactly based on the principle of successive convex approximation (SCA). In addition, to further reduce the complexity, we propose a low-complexity inexact-alternating-optimization design, in which the reflective beamforming optimization subproblem is solved more inexactly. Numerical results show that the significant performance gains achieved by the proposed three designs against benchmark schemes. Moreover, the inexact-alternating-optimization designs outperform the exact-alternating-optimization one in terms of both the achieved min-weighted-SINR value and the computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源