论文标题

我们如何移动:通过系统动态建模人类运动

How Do We Move: Modeling Human Movement with System Dynamics

论文作者

Wei, Hua, Xu, Dongkuan, Liang, Junjie, Li, Zhenhui

论文摘要

建模人类在空间中的移动方式可用于运输,公共安全和公共卫生的决策。人类的运动可以视为人类随着时间的流逝(\ eg,位置)之间在状态之间过渡的动态过程。在人类世界中,像人类或具有人类驾驶员的车辆这样的聪明人起着重要作用,代理的状态主要描述人类活动,并且国家的过渡受到人类决策和实际限制现实世界系统的影响(\ eg,\ eg,代理人需要花时间花时间在一定距离上移动)。因此,国家过渡的建模应包括对代理决策过程和物理系统动态的建模。在本文中,我们建议我们通过学习决策模型并整合系统动力学来从新颖的角度来模拟人类运动中的状态过渡。 \我们通过生成的对抗性模仿学习学习人类运动,并在学习过程中从系统动力学中整合了随机约束。据我们所知,我们是第一个学会通过系统动态来建模移动代理的状态过渡的人。在对现实世界数据集的广泛实验中,我们证明了所提出的方法可以生成类似于现实世界的轨迹,并且在预测下一个位置和生成长期未来轨迹方面的最先进方法。

Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. Human movements can be viewed as a dynamic process that human transits between states (\eg, locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (\eg, agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agent's decision process and the physical system dynamics. In this paper, we propose \ours to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. \ours learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源