论文标题

封闭有序的差分领域中尺寸的巧合

Coincidence of dimensions in closed ordered differential fields

论文作者

Eleftheriou, Pantelis E., Sanchez, Omar Leon, Regnault, Nathalie

论文摘要

从M. Singer的意义上讲,令$ \ Mathcal k = \ langle \ Mathcal r,Δ\ rangle $是一个封闭的有序差分字段,其常数为$ c $。在本说明中,我们证明,对于对$ \ mathcal m = \ langle \ mathcal r,c \ rangle $,$Δ$ dimension和大尺寸重合的集合。作为一个应用程序,我们表征了$ \ Mathcal k $中的可定义集,这些集合在$ c $的内部为$ \ Mathcal M $且具有$δ$ -Dimension $ 0 $。我们进一步表明,对于在$ \ Mathcal K $中可定义的集合,具有$δ$ -Dimension $ 0 $通常并不意味着在$ c $中的共同分析性(与TransSeries相反)。我们还指出,尺寸的巧合也存在于差异封闭的字段和跨性别的背景下。

Let $\mathcal K=\langle\mathcal R, δ\rangle$ be a closed ordered differential field, in the sense of M. Singer, and $C$ its field of constants. In this note, we prove that, for sets definable in the pair $\mathcal M=\langle \mathcal R, C\rangle$, the $δ$-dimension and the large dimension coincide. As an application, we characterize the definable sets in $\mathcal K$ that are internal to $C$ as those sets that are definable in $\mathcal M$ and have $δ$-dimension $0$. We further show that, for sets definable in $\mathcal K$, having $δ$-dimension $0$ does not generally imply co-analyzability in $C$ (in contrast to the case of transseries). We also point out that the coincidence of dimensions also holds in the context of differentially closed fields and in the context of transseries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源