论文标题

素描到艺术:合成草图的风格化艺术图像

Sketch-to-Art: Synthesizing Stylized Art Images From Sketches

论文作者

Liu, Bingchen, Song, Kunpeng, Elgammal, Ahmed

论文摘要

我们提出了一种新的方法,用于合成草图中详细详细的艺术风格图像。给定草图,没有语义标记,并且是特定样式的参考图像,该模型可以通过颜色和纹理合成有意义的细节。该模型由三个明确设计的模块组成,用于更好的艺术风格捕获和发电。基于GAN框架,引入了双掩蔽机制来强制(从草图)强制执行内容约束,并开发了特征图转换技术来增强样式一致性(到参考图像)。最后,提出了实例归一化的逆过程,以解散样式和内容信息,因此可以产生更好的综合性能。实验证明了基于先前最新的技术对基准的显着定性和定量提升,该技术是针对拟议过程所采用的。

We propose a new approach for synthesizing fully detailed art-stylized images from sketches. Given a sketch, with no semantic tagging, and a reference image of a specific style, the model can synthesize meaningful details with colors and textures. The model consists of three modules designed explicitly for better artistic style capturing and generation. Based on a GAN framework, a dual-masked mechanism is introduced to enforce the content constraints (from the sketch), and a feature-map transformation technique is developed to strengthen the style consistency (to the reference image). Finally, an inverse procedure of instance-normalization is proposed to disentangle the style and content information, therefore yields better synthesis performance. Experiments demonstrate a significant qualitative and quantitative boost over baselines based on previous state-of-the-art techniques, adopted for the proposed process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源