论文标题

特征值问题的动力扰动理论

Dynamical perturbation theory for eigenvalue problems

论文作者

Kenmoe, Maseim, Smerlak, Matteo, Zadorin, Anton

论文摘要

物理,化学和其他领域的许多问题本质上都是扰动,即与已知溶液的相关问题仅略有不同。其中突出的是特征值扰动问题,其中一个人寻求具有小偏外元素的矩阵的特征向量和特征值。在这里,我们介绍了一种新型的迭代算法,以根据固定点迭代来计算这些特征,以在复杂的投影空间中用于代数方程。我们从显式和数值示例中显示,我们的算法在三个计数上的表现优于通常的Rayleigh-Schrödinger扩展。首先,由于它不是将其定义为功率序列,因此其收敛域并不是局限于复杂平面中磁盘的先验域。我们发现,它通常通常超出了收敛的标准扰动半径。其次,它的收敛速度比瑞利 - 雪丁格的扩展更快,即达到给定的精度需要较少的迭代。第三,每次迭代的(时间和空间)算法复杂性不会随近似的顺序而增加,从而可以进行更高的精度计算。因为这种复杂性仅仅是矩阵乘法的复杂性,所以我们的动力学方案也比矩阵的大小比通用的特征值例程(如移位QR或分裂和混合算法)更好地缩放。无论它们是密集,稀疏,对称还是不对称的,我们都会确认动态对角线会随着矩阵的大小的增长而迅速超过拉帕克驱动器。为了仅计算主要特征向量,我们的方法收敛的幅度顺序比ARPACK中实现的Arnoldi算法更快。

Many problems in physics, chemistry and other fields are perturbative in nature, i.e. differ only slightly from related problems with known solutions. Prominent among these is the eigenvalue perturbation problem, wherein one seeks the eigenvectors and eigenvalues of a matrix with small off-diagonal elements. Here we introduce a novel iterative algorithm to compute these eigenpairs based on fixed-point iteration for an algebraic equation in complex projective space. We show from explicit and numerical examples that our algorithm outperforms the usual Rayleigh-Schrödinger expansion on three counts. First, since it is not defined as a power series, its domain of convergence is not a priori confined to a disk in the complex plane; we find that it indeed usually extends beyond the standard perturbative radius of convergence. Second, it converges at a faster rate than the Rayleigh-Schrödinger expansion, i.e. fewer iterations are required to reach a given precision. Third, the (time- and space-) algorithmic complexity of each iteration does not increase with the order of the approximation, allowing for higher precision computations. Because this complexity is merely that of matrix multiplication, our dynamical scheme also scales better with the size of the matrix than general-purpose eigenvalue routines such as the shifted QR or divide-and-conquer algorithms. Whether they are dense, sparse, symmetric or unsymmetric, we confirm that dynamical diagonalization quickly outpaces LAPACK drivers as the size of matrices grows; for the computation of just the dominant eigenvector, our method converges order of magnitudes faster than the Arnoldi algorithm implemented in ARPACK.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源