论文标题
限制顺序书籍的均衡模型:平均场地游戏视图
Equilibrium Model of Limit Order Books: A Mean-field Game View
论文作者
论文摘要
在本文中,我们研究了限制顺序簿(LOB)的连续时间平衡模型,其中流动性动态遵循具有不断发展的强度的非本地,反射的平均场随机微分方程(SDE)。概括Ma等人的基本思想。 (2015年),我们认为LOB的前沿(例如,要价最佳)是平均场随机控制问题的价值函数,是流动性提供商中Bertrand型竞争的限制版本。通过对$ n $ seller static Bertrand游戏的详细分析,我们制定了代表性卖家的连续时间限制平均场控制问题。然后,我们验证动态编程原理(DPP),并表明该值函数是相应的汉密尔顿 - 雅各比 - 贝尔曼(HJB)方程的粘度解决方案。我们认为,按照Ma等人的想法,可以使用该值函数来获得LOB的平衡密度函数。 (2015)。
In this paper we study a continuous time equilibrium model of limit order book (LOB) in which the liquidity dynamics follows a non-local, reflected mean-field stochastic differential equation (SDE) with evolving intensity. Generalizing the basic idea of Ma et al. (2015), we argue that the frontier of the LOB (e.g., the best asking price) is the value function of a mean-field stochastic control problem, as the limiting version of a Bertrand-type competition among the liquidity providers. With a detailed analysis on the $N$-seller static Bertrand game, we formulate a continuous time limiting mean-field control problem of the representative seller. We then validate the dynamic programming principle (DPP), and show that the value function is a viscosity solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We argue that the value function can be used to obtain the equilibrium density function of the LOB, following the idea of Ma et al. (2015).