论文标题

结合浮雕和Lyapunov技术,以获取流动力学和机电方面的时间相关问题

Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics

论文作者

Pietikäinen, Iivari, Černotík, Ondřej, Filip, Radim

论文摘要

腔光力学和机电构成了一个既定的研究领域,研究了电磁场之间的相互作用和量子机械谐振器的运动。在许多应用程序中,使用了相互作用的线性化形式,这允许使用lyapunov方程对Wigner函数的协方差矩阵进行充分描述系统动力学。但是,在哈密顿量变得依赖时间的情况下,这种方法是有问题的,就像同时在多个频率上驱动的系统一样。这种情况高度相关,因为它导致机械状态或机械运动的背部探测测量值的耗散制备。时间相关的动力学可以通过浮部技术来解决,而浮quet技术的应用并不简单。在这里,我们描述了一种将Lyapunov方法与Floquet技术相结合的通用方法,该方法使我们能够将初始时间依赖的问题转换为不依赖时间的问题,尽管它在更大的希尔伯特空间中。我们展示了如何通过使用原始时间依赖性系统的漂移矩阵的正确定义的傅立叶组件来简化漫长的浮雕形式主义的冗长过程,并从其独立于时间的形式中衍生出lyapunov方程的冗长过程。然后,我们使用形式主义来全面分析旋转波近似超出机械挤压的耗散产生。我们的方法适用于在腔磁机械,机电和相关学科中多音调驱动方案的各种问题。

Cavity optomechanics and electromechanics form an established field of research investigating the interactions between electromagnetic fields and the motion of quantum mechanical resonators. In many applications, linearised form of the interaction is used, which allows for the system dynamics to be fully described using a Lyapunov equation for the covariance matrix of the Wigner function. This approach, however, is problematic in situations where the Hamiltonian becomes time dependent as is the case for systems driven at multiple frequencies simultaneously. This scenario is highly relevant as it leads to dissipative preparation of mechanical states or backaction-evading measurements of mechanical motion. The time-dependent dynamics can be solved with Floquet techniques whose application is, nevertheless, not straightforward. Here, we describe a general method for combining the Lyapunov approach with Floquet techniques that enables us to transform the initial time-dependent problem into a time-independent one, albeit in a larger Hilbert space. We show how the lengthy process of applying the Floquet formalism to the original equations of motion and deriving a Lyapunov equation from their time-independent form can be simplified with the use of properly defined Fourier components of the drift matrix of the original time-dependent system. We then use our formalism to comprehensively analyse dissipative generation of mechanical squeezing beyond the rotating wave approximation. Our method is applicable to various problems with multitone driving schemes in cavity optomechanics, electromechanics, and related disciplines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源