论文标题
单核模型的中子中子的红移因子和扩散的平衡。
Redshift factor and diffusive equilibrium of unbound neutrons in the single nucleus model of accreting neutron star crust
论文作者
论文摘要
使用wigner-seitz与球形细胞近似,我们重新分析了广泛使用的单核模型,用于积聚中子星形地壳。我们计算地壳内的β不平衡,这是相当可观的,这意味着中子和巴属化学电位,$μ_n$和$μ_{\ rm b} $并不相等。我们还包括由物质压缩驱动的非平衡反应,并在反应层中进行。 $ e^φμ_n$的恒定物,其中空间度量分量$ g_ {00} = e^{2φ} $,在反应层之间的壳中不适用,因为单个电子捕获被阻止,使中子分数是固定的,因此中性不适合中性,因此中子不是构成危险问题的独立成分。反应层之间壳的中子扩散不存在,源于这些壳中的中子分数(浓度)的恒定。在反应层中,由中子梯度引起的中子分数梯度产生的外部力是通过作用于未结合中子的内向重力来平衡的。与壳厚度相比,忽略了反应层的厚度,我们获得了条件$ e^{φ(r)} f_q(r)g(r)g(r)g(r)= $常数,其中$ g $是每个核心的gibbs能量,在反应表面上不连续下降,反应表面上不连续下降,$ f_q(r)g(r)g(r)g(r)= iS $ with a plation $ with a g wive a = a \ gidetiltieldem} $ f_q(r)$取消$ g(r)$中的不连续性(滴)。函数$ f_q(r)$是使用$ f_q(p)$和$ g(p)$从状态方程(EOS)获得的tolman-oppenheimer-volkov方程计算的。 The constancy of of $e^{Φ(r)}{\widetilde{g}}(r)$ is an extension of the standard relation $e^{Φ(r)}{μ}_{\rm b}(r)=$constant, valid in hydrostatic equilibrium for catalyzed crust.
Using a Wigner-Seitz approximation with spherical cells, we re-analyze a widely used single nucleus model of accreting neutron star crust. We calculate beta disequilibrium within the crust, which is sizable, and implies that neutron and baryon chemical potentials, $μ_n$ and $μ_{\rm b}$, are not equal. We include also non-equilibrium reactions, driven by matter compression, and proceeding in the reaction layers. The constancy of $e^Φμ_n$, where the spacetime metric component $g_{00}=e^{2Φ}$, in the shells between the reaction layers is not applicable, because single electron captures are blocked, so that the neutron fraction is fixed, and therefore neutrons are not an independent component of the crust matter. The absence of neutron diffusion in the shells between the reaction layers, stems from the constancy of the neutron fraction (concentration) in these shells. In the reaction layers, the outward force resulting from neutron fraction gradient is balanced by the inward gravitational force acting on unbound neutrons. Neglecting the thickness of the reaction layers compared to the shell thickness, we obtain condition $e^{Φ(r)}f_Q(r)g(r)=$constant, where $g$ is Gibbs energy per nucleon, undergoing discontinuous drops on the reaction surfaces, and $f_Q(r)g(r)={\widetilde{g}}(r)$ is a continuous function, due to the factor $f_Q(r)$ canceling the discontinuities (drops) in $g(r)$. The function $f_Q(r)$ is calculated using the Tolman-Oppenheimer-Volkov equations from $f_Q(P)$ and $g(P)$ obtained from the equation of state (EOS) with discontinuites. The constancy of of $e^{Φ(r)}{\widetilde{g}}(r)$ is an extension of the standard relation $e^{Φ(r)}{μ}_{\rm b}(r)=$constant, valid in hydrostatic equilibrium for catalyzed crust.