论文标题

CCTA扫描中的冠状壁分割,通过轮廓正则化的混合网

Coronary Wall Segmentation in CCTA Scans via a Hybrid Net with Contours Regularization

论文作者

Huang, Kaikai, Tejero-de-Pablos, Antonio, Yamane, Hiroaki, Kurose, Yusuke, Iho, Junichi, Tokunaga, Youji, Horie, Makoto, Nishizawa, Keisuke, Hayashi, Yusaku, Koyama, Yasushi, Harada, Tatsuya

论文摘要

提供冠状动脉封闭且连接良好的边界对于协助心脏病学家诊断冠状动脉疾病(CAD)至关重要。最近,已经提出了几种基于深度学习的方法,用于医学图像中的边界检测和分割。但是,当应用于冠状动脉壁检测时,它们倾向于产生断开和不准确的边界。在本文中,我们为冠状动脉提出了一种新颖的边界检测方法,该方法着重于边界的连续性和连通性。为了对连续图像的空间连续性进行建模,我们的混合体系结构将体积(即冠状动脉的一部分)作为输入并检测到目标切片的边界(即段的中央切片)。然后,为了确保封闭的边界,我们提出了一个轮廓约束的加权Hausdorff距离损失。我们在34例冠状动脉血管造影扫描患者的数据集上评估了我们的方法,该数据集具有动脉的弯曲平面重建(CCTA-CPR)(即横截面)。实验结果表明,我们的方法可以产生平滑的封闭边界,其表现优于最先进的精度。

Providing closed and well-connected boundaries of coronary artery is essential to assist cardiologists in the diagnosis of coronary artery disease (CAD). Recently, several deep learning-based methods have been proposed for boundary detection and segmentation in a medical image. However, when applied to coronary wall detection, they tend to produce disconnected and inaccurate boundaries. In this paper, we propose a novel boundary detection method for coronary arteries that focuses on the continuity and connectivity of the boundaries. In order to model the spatial continuity of consecutive images, our hybrid architecture takes a volume (i.e., a segment of the coronary artery) as input and detects the boundary of the target slice (i.e., the central slice of the segment). Then, to ensure closed boundaries, we propose a contour-constrained weighted Hausdorff distance loss. We evaluate our method on a dataset of 34 patients of coronary CT angiography scans with curved planar reconstruction (CCTA-CPR) of the arteries (i.e., cross-sections). Experiment results show that our method can produce smooth closed boundaries outperforming the state-of-the-art accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源