论文标题

基于基础不变的系统构建

On the systematic construction of basis invariants

论文作者

Trautner, Andreas

论文摘要

我们描述了一种新的,通常适用的策略,用于系统构建基础不变性(BIS)。我们的方法允许人们计算相互独立的BI的数量,并在相互依赖的BI之间提供受控访问相互关系(Syzygies)的访问。由于新颖的使用正交遗产投影操作员,我们获得了最短的不变式及其相互关系。非线性双BI的子结构是根据线性,基础旋转对象完全解决的。该子结构以简单的方式区分真实(CP-even)和纯粹的虚构(CP-ODD)bis。作为一个说明性的例子,我们构建了一般两-higgs-doublet模型标量电势的BIS的完整环。

We describe a new, generally applicable strategy for the systematic construction of basis invariants (BIs). Our method allows one to count the number of mutually independent BIs and gives controlled access to the interrelations (syzygies) between mutually dependent BIs. Due to the novel use of orthogonal hermitian projection operators, we obtain the shortest possible invariants and their interrelations. The substructure of non-linear BIs is fully resolved in terms of linear, basis-covariant objects. The substructure distinguishes real (CP-even) and purely imaginary (CP-odd) BIs in a simple manner. As an illustrative example, we construct the full ring of BIs of the scalar potential of the general Two-Higgs-Doublet model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源