论文标题

物理对象分解的概率方法

Probabilistic approach to physical object disentangling

论文作者

Pajarinen, Joni, Arenz, Oleg, Peters, Jan, Neumann, Gerhard

论文摘要

彼此之间存在物理上解散的纠缠对象是废物隔离或任何需要拆卸结构的任务中遇到的问题。通常没有对象模型,尤其是在不规则形状的对象的情况下,机器人由于遮挡而无法创建场景模型。我们的关键见解之一是,基于以前的感官输入,我们只想将对象从障碍周围的分离中移出。也就是说,我们只需要知道机器人可以成功地移动的位置即可计划分离。由于不确定性,我们将有关阻止运动的信息集成到概率图中。地图定义了机器人成功移至特定配置的概率。使用ASCECT,我们可以按迭代计划并执行解开迭代。由于我们的方法仅规避了以前遇到的障碍,因此新运动将产生有关未知障碍的信息,这些障碍会阻止运动,直到机器人学会了避免所有障碍和解开的成功。在实验中,我们使用快速探索的随机树(RRT)算法的特殊概率版本来计划并证明在2-D和3-D模拟中成功地分离对象,并在Kuka LBR 7-DOF Robot上进行。此外,我们的方法优于基线方法。

Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and, especially with cluttered irregularly shaped objects, the robot can not create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源