论文标题

在参数不确定性下的安全最佳控制

Safe Optimal Control under Parametric Uncertainties

论文作者

Sarabu, Hemanth, Makkapati, Venkata Ramana, Comandur, Vinodhini, Tsiotras, Panagiotis, Hutchinson, Seth

论文摘要

我们使用新颖的常规化器解决了在参数不确定性下的安全最佳路径计划的问题,该新规则允许使用安全性交易最佳性。提议的正规器利用了以下概念:碰撞可以在最佳控制设置中建模为约束违规行为,以便产生带有碰撞风险的开环轨迹。使用状态依赖性相关性函数和约束函数相对于参数变化的一阶变异来评估约束违规的风险。该方法是通用的,可以适应任何最佳控制公式,该公式涉及参数不确定性下的约束。使用自动机器人避免使用不确定速度的多个动态障碍物的模拟来证明所提出的方法的有效性。最后,我们介绍了汽车与火车问题,以强调所得风险规避行为对用于得出正常化器的约束功能形式的依赖性。

We address the issue of safe optimal path planning under parametric uncertainties using a novel regularizer that allows trading off optimality with safety. The proposed regularizer leverages the notion that collisions may be modeled as constraint violations in an optimal control setting in order to produce open-loop trajectories with reduced risk of collisions. The risk of constraint violation is evaluated using a state-dependent relevance function and first-order variations in the constraint function with respect to parametric variations. The approach is generic and can be adapted to any optimal control formulation that deals with constraints under parametric uncertainty. Simulations using a holonomic robot avoiding multiple dynamic obstacles with uncertain velocities are used to demonstrate the effectiveness of the proposed approach. Finally, we introduce the car vs. train problem to emphasize the dependence of the resultant risk aversion behavior on the form of the constraint function used to derive the regularizer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源