论文标题

FPCONV:学习本地扁平化以进行点卷积

FPConv: Learning Local Flattening for Point Convolution

论文作者

Lin, Yiqun, Yan, Zizheng, Huang, Haibin, Du, Dong, Liu, Ligang, Cui, Shuguang, Han, Xiaoguang

论文摘要

我们介绍了FPCONV,这是一种新型的表面风格的卷积算子,设计用于3D点云分析。与以前的方法不同,FPCONV不需要转换为3D网格或图形等中间表示,并且直接在点云的表面几何形状上工作。更具体地说,对于每个点,FPCONV通过自动学习重量映射来在2D网格上轻轻地投影周围的点来执行局部扁平化。因此,可以将常规的2D卷积用于有效的特征学习。可以轻松地将FPCONV集成到各种网络体系结构中,以进行3D对象分类和3D场景细分,并与现有的体积类型卷积实现可比的性能。更重要的是,我们的实验还表明,FPCONV可以是体积卷积的补充,共同训练它们可以进一步提高整体绩效,从而成为最先进的结果。

We introduce FPConv, a novel surface-style convolution operator designed for 3D point cloud analysis. Unlike previous methods, FPConv doesn't require transforming to intermediate representation like 3D grid or graph and directly works on surface geometry of point cloud. To be more specific, for each point, FPConv performs a local flattening by automatically learning a weight map to softly project surrounding points onto a 2D grid. Regular 2D convolution can thus be applied for efficient feature learning. FPConv can be easily integrated into various network architectures for tasks like 3D object classification and 3D scene segmentation, and achieve comparable performance with existing volumetric-type convolutions. More importantly, our experiments also show that FPConv can be a complementary of volumetric convolutions and jointly training them can further boost overall performance into state-of-the-art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源