论文标题

我要生气:最大程度地比较分类器的差异竞赛

I Am Going MAD: Maximum Discrepancy Competition for Comparing Classifiers Adaptively

论文作者

Wang, Haotao, Chen, Tianlong, Wang, Zhangyang, Ma, Kede

论文摘要

图像分类的分层表示形式的学习经历了一系列令人印象深刻的成功,部分原因是大规模标记的培训数据可用性。另一方面,传统上对训练有素的分类器进行了评估,这些分类器在小型和固定的测试图像集上进行了评估,这些测试图像被认为在所有自然图像的空间中都非常稀疏。因此,在过度重复使用的测试集上的最新性能是否概括为具有更丰富内容变化的现实世界自然图像,这是值得怀疑的。受到在心理物理和生理研究中测试感知模型的有效刺激选择的启发,我们提出了比较图像分类器的替代框架,我们将其命名为最大差异(MAD)竞争。我们没有使用固定的测试图像比较图像分类器,而是从任意较大的未标记图像语料库中自适应地对一个小测试集进行了样品,以最大程度地提高分类器之间的差异,该差异通过WordNet层次结构的距离来衡量。对由此产生的模型依赖性图像集的人类标记揭示了竞争分类器的相对性能,并就可以改善它们的潜在方法提供了有用的见解。我们报告了11个Imagenet分类器的疯狂竞争结果,同时指出该框架很容易扩展且具有成本效益,可以将未来的分类器添加到竞争中。可以在https://github.com/tamu-vita/mad上找到代码。

The learning of hierarchical representations for image classification has experienced an impressive series of successes due in part to the availability of large-scale labeled data for training. On the other hand, the trained classifiers have traditionally been evaluated on small and fixed sets of test images, which are deemed to be extremely sparsely distributed in the space of all natural images. It is thus questionable whether recent performance improvements on the excessively re-used test sets generalize to real-world natural images with much richer content variations. Inspired by efficient stimulus selection for testing perceptual models in psychophysical and physiological studies, we present an alternative framework for comparing image classifiers, which we name the MAximum Discrepancy (MAD) competition. Rather than comparing image classifiers using fixed test images, we adaptively sample a small test set from an arbitrarily large corpus of unlabeled images so as to maximize the discrepancies between the classifiers, measured by the distance over WordNet hierarchy. Human labeling on the resulting model-dependent image sets reveals the relative performance of the competing classifiers, and provides useful insights on potential ways to improve them. We report the MAD competition results of eleven ImageNet classifiers while noting that the framework is readily extensible and cost-effective to add future classifiers into the competition. Codes can be found at https://github.com/TAMU-VITA/MAD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源