论文标题

多项式操作的快速入境算法:分裂,评估,插值

Fast In-place Algorithms for Polynomial Operations: Division, Evaluation, Interpolation

论文作者

Giorgi, Pascal, Grenet, Bruno, Roche, Daniel S.

论文摘要

我们考虑了单变量多项式的几个重要操作的节省空间版本,即功率序列反转和分裂,剩余,多点评估和插值。现在古典的结果表明,可以在(几乎)与快速多项式乘法相同的渐近时间(几乎)解决此类问题。但是,这些降低即使应用于快速多项式乘法的地面变体,也会产生至少需要线性量的额外空间才能进行中间结果。我们展示了上述多项式计算的新的原位算法,这些算法仅需要持续的额外空间,并达到与现场的渐近运行时间相同的渐近运行时间。我们还提供了精确的复杂性分析,以使所有常数都被显式化,并通过基础乘法算法的空间使用进行参数化。

We consider space-saving versions of several important operations on univariate polynomials, namely power series inversion and division, division with remainder, multi-point evaluation, and interpolation. Now-classical results show that such problems can be solved in (nearly) the same asymptotic time as fast polynomial multiplication. However, these reductions, even when applied to an in-place variant of fast polynomial multiplication, yield algorithms which require at least a linear amount of extra space for intermediate results. We demonstrate new in-place algorithms for the aforementioned polynomial computations which require only constant extra space and achieve the same asymptotic running time as their out-of-place counterparts. We also provide a precise complexity analysis so that all constants are made explicit, parameterized by the space usage of the underlying multiplication algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源