论文标题
Emosaic:可视化文本的情感内容在不同的粒度
Emosaic: Visualizing Affective Content of Text at Varying Granularity
论文作者
论文摘要
本文提出了Emosaic,这是一种可视化文本文档的情感音调的工具,考虑了情感的多个维度和语义粒度的不同水平。 Emosaic基于关于语言,情感和色彩知觉之间关系的心理学研究。我们利用了人类情感的既定三维模型:价(好,良好,坏,可怕),唤醒(平静,被动与激动人心,活跃)和优势(弱,受控与强度,在控制中)。以前,由于所涉及的知觉挑战,多维情绪模型很少在文本数据的可视化中使用。此外,直到最近,大多数文本可视化仍然处于高水平,排除了与文本深层语义内容的紧密接触。通过实证研究的了解,我们引入了一个颜色映射,将三维情感空间中的任何点转化为独特的颜色。 Emosaic使用与价宽容模型的三个情感参数注释的单词的情感词典来从文本中提取情感含义,然后将其分配给它们相应的色调 - 饱和度 - 实现颜色空间的颜色参数。这种将情感映射到彩色的方法旨在帮助读者更容易地掌握文本的情感语气。 Emosaic的几个特征使读者可以更详细地进行交互性地探索文本的情感内容。例如,以直方图的汇总形式,按顺序形式按照文本顺序进行顺序形式,并详细嵌入了文本显示本身。已包括交互技术,以允许过滤和导航文本和可视化。
This paper presents Emosaic, a tool for visualizing the emotional tone of text documents, considering multiple dimensions of emotion and varying levels of semantic granularity. Emosaic is grounded in psychological research on the relationship between language, affect, and color perception. We capitalize on an established three-dimensional model of human emotion: valence (good, nice vs. bad, awful), arousal (calm, passive vs. exciting, active) and dominance (weak, controlled vs. strong, in control). Previously, multi-dimensional models of emotion have been used rarely in visualizations of textual data, due to the perceptual challenges involved. Furthermore, until recently most text visualizations remained at a high level, precluding closer engagement with the deep semantic content of the text. Informed by empirical studies, we introduce a color mapping that translates any point in three-dimensional affective space into a unique color. Emosaic uses affective dictionaries of words annotated with the three emotional parameters of the valence-arousal-dominance model to extract emotional meanings from texts and then assigns to them corresponding color parameters of the hue-saturation-brightness color space. This approach of mapping emotion to color is aimed at helping readers to more easily grasp the emotional tone of the text. Several features of Emosaic allow readers to interactively explore the affective content of the text in more detail; e.g., in aggregated form as histograms, in sequential form following the order of text, and in detail embedded into the text display itself. Interaction techniques have been included to allow for filtering and navigating of text and visualizations.